Listed here are some of the papers referenced in a survey paper on tangent exponential families by Davison and Reid. The numbers beside each paper correspond to the numbers on Don's website and CV.
178 Fraser, D.A.S. and Reid, N. (1995). Ancillaries and third order significance. Utilitas Mathematica47, 33--53.
171 Fraser, D.A.S. and Reid, N. (1993). Third order asymptotic models: Likelihood functions leading to accurate approximate inference for distribution functions. Statistica Sinica3, 67--82.
210 Andrews, D.A., Fraser, D.A.S. and Wong, A. (2005). Computatation of distribution functions from likelihood information near observed data. J. Statist. Plann. Infer. 134, 180--193.
209 Cakmak, S., Fraser, D.A.S., McDunnough, P., Reid, N. and Yuan, X. (1998). Likelihood centered asymptotic model exponential and location versions. J. Statist. Plann. Infer.66 211--222.
184 Cakmak, S., Fraser, D.A.S. and Reid, N. (1994). Multivariate asymptotic model: exponential and location approximations. Utilitas Mathematica46 21--31
198 Fraser, D.A.S. and Reid, N. (2001). Ancillary information for statistical inference. in Empirical Bayes and Likelihood Inference, eds. S.E. Ahmed and N. Reid, 285--207. New York: Springer
This list includes other papers on higher-order asymptotics that may be difficult to access.
166 Abebe, F., Cakmak, S., Cheah, P.K., Fraser, D.A.S., Kuhn, J., McDunnough, P., Reid, N., and Tapia, A. (1995). Third order asymptotic model: Exponential and location type approximations. Pari-sankhyan Samikkha2, 25--33.
167 Reid, N., and Fraser, D.A.S. (1990). Accurate approximation of tail probabilities using the likelihood function, Proceedings of IV CLAPEM. Contribuciones en probabilidad y estadistica matematica 4, 36--50, Mexico City.
173 Fraser, D.A.S., Monette, G., Ng, K.W., and Wong, A. (1994). Higher order approximations with generalized linear models. In Anderson, T.W., Fang, K.T., and Olkin, I. (Eds.), Multivariate Analysis and Its Applications , IMS Lecture Notes and Monograph Series 24, 253--262.
177 Cakmak, S., Fraser, D.A.S., McDunnough, P., Reid, N., and Yuan, X. (1998). Likelihood centered asymptotic model: exponential and location model versions. Int. J. Math. and Stat. Sci. 4, 211--222 (ntbc).
182 Abebe, F., Fraser, D.A.S., and Wong, A. (1996). Nonlinear regression: third order significance. Utilitas Mathematica 49, 3--19.
183 Cheah, P.K., Fraser, D.A.S., and Reid, N. (1995). Adjustment to likelihood and densities: calculating significance. J.Statist. Research29, 1--13.
185 Fraser, D.A.S., and Wong, A.C.M. (1997). On the accuracy of approximate Studentization. Statist. Papers38, 351--356.
189 Fraser, D.A.S., and Reid, N. (1995). Evolution in statistical inference: from sufficiency to likelihood asymptotics. Journal of Statistical Research29, 59--70.
191 Fraser, D.A.S., and Reid, N. (1996). Separating error, nuisance effect and main effect: Tangent models and third order inference. Journal of Statistical Research30, 1--8.
202 Fraser, D.A.S., Reid, N., and Wu, J. (1997). Estimating functions and higher order significance. In R.G. Taylor, and V.P. Godambe (Eds.) Selected Proceedings of the Symposium on Estimating Functions IMS Lecture Notes-Monograph Series,Hayward: IMS, 105-114.
205 Fraser, D.A.S., Ng, K.W., and Wong, A.C.M. (1997). A third order asymptotic test of bioequivalence in a multivariate parametric setting. in Proceedings of the 1997 International Symposium on Contemporary Multivariate Analysis, Hong Kong
212 Fraser, D.A.S., and Yi, G. Y. (2003). Location reparameterization and default priors for statistical analysis. J. Iranian Statist. Soc.1, 55--78.
215 Fraser, D.A.S., Reid, N., Li, R., and Wong, A.(2003). p-value formulas from likelihood asymptotics: Bridging the singularities.J. Statist. Research 37, 1--15.
225 Fraser, D.A.S. and Reid, N. (2006). Assessing a vector parameter. Student 5, 247--256.
227 Fraser, D.A.S., Wong, A. and Wu, J. (2004). Simple accurate and unique: The methods of modern likelihood theory. Pakistan J. Statist.20, 173--192.
231 Fraser, D.A.S., Reid, N., and Wong, A.C.M. (2009). What a model with data says about theta. International J. Statist. Science 3, 163--177.
245 Fraser, D.A.S., Faye, L., Cai, T., Ji, K., Mallo, M., and Thinniyam, R. (2008). Is $r^*$ linear in $r$? J. Statist. Res42, 7--19.
248 Yi, G.Y. and Fraser, D.A.S. (2007). Higher Order Asymptotics: An Intrinsic Difference between Univariate and Multivariate Models. J. Statist. Research41, 1--20.
249 Fraser, A.M. Fraser, D.A.S. and Fraser, M.J. (2010). Parameter curvature revisited and the Bayesian frequentist divergence. J. Statist. Research 44 (In honour of B.Efron), 335--346.
252 Fraser, D.A.S. and Sun, Y. (2009). Some corrections for Bayes curvature. Pakistan J. Statist. 25, 351--370.
257 Fraser, D.A.S., Naderi, A., Ji, Kexin, Lin, Wei and Su, Jie, (2011). Exponential models: Approximations for probabilities. J. Iranian Statist. Soc. 10, 95--107.
260 Fraser, D.A.S. (2016). Definitive testing of an interest parameter: Using parameter continuity. J. Statist. Research48-50, 47--59.
261 Fraser, D.A.S. (2012). The bias in Bayes and how to measure it. Pakistan J. Statist. and Operations Research 8, 345--352.
264 Fraser, D.A.S., Hoang, U., Ji, K., Li, X., Li, L., Lin, W,, and Su, J. (2012). Vector exponential models and second order analysis. Pakistan J. Statist. and Operations Research 8 433--440.
269 Fraser, D.A.S., Lin, W. Wang, A. L.(2013). Signed likelihood root with a simple skewness correction: Regular models, second order. J. Statist. Research47, 1--10.