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10.1 Introduction

In a series of papers starting in the late 1980s, D. A. S. Fraser, N. Reid and coworkers
developed the tangent exponential model for higher-order likelihood inference. This chapter
aims to explain the motivation and justification for this model and to describe how it is
used to compute accurate approximations. The literature on this is not entirely transparent,
as the argument evolved over numerous articles (Fraser, 1988, 1990, 1991, 2004; Fraser and
Reid, 1988, 1993, 1995, 2001; Cakmak et al., 1994; Fraser et al., 1999). We give a heuristic
account of this construction, for the most part skating over the technical details, and provide
an annotated bibliography as a road map through the literature. The high accuracy of the
resulting approximations has been verified empirically both in numerous articles and in
books such as Brazzale et al. (2007), Chapter 8 of which overlaps with the account here.
Approximations based on the tangent exponential model build on the theory of

conditional and marginal inference, and on Laplace and saddlepoint approximations.
Chapter 12 of Davison (2003) defines some basic notions and derives some of the results
presented here. Section 11.3.1 of that book contains an account of the Laplace method for
integrals and related approximations for cumulative distribution functions. Fuller accounts
may be found in Barndorff-Nielsen and Cox (1989, 1994), McCullagh (1987) and Severini
(2000). Jensen (1995) and Butler (2007) provided comprehensive accounts of saddlepoint
approximations and their many applications in analysis, probability, and statistics, and a
helpful derivation is given in Kolassa (2006).
To fix notation and provide some building blocks that will be useful later, we start by

summarising first-order inferential approximations related to the normal distribution and
the central limit theorem. We then outline how the principles of sufficiency and ancillarity
lead to consideration of significance functions, which are central in this and other frameworks
for statistical inference, before discussing how the likelihood function can be viewed as a
pivot. This leads to two density approximations, the p∗ approximation of Barndorff-Nielsen
(1983) and the tangent exponential model density approximation of Fraser (1988). Higher-
order approximations to significance functions are then developed; first for linear exponential
family models, where the link to saddlepoint approximations is most explicit, and then for
general models, where the tangent exponential model plays a crucial role. Some extensions
and generalisations are sketched in the concluding section.
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10.2 Likelihood and Significance Functions

10.2.1 Background

We consider a vector Y = (Y1, . . . , Yn)
T of continuous responses and a statistical model

for Y with joint density function f(y; θ) that depends on a parameter θ ∈ Θ ⊂ Rp.
Vectors throughout are column vectors, and the superscripts T and o denote transpose
and a quantity evaluated at the observed data, so y denotes a generic response vector and
yo its observed value, and θ̂ a maximum likelihood estimator and θ̂o the maximum likelihood
estimate computed from yo. Continuity of the response distribution plays a crucial role in
the general development; some comments on extending the tangent exponential model for
discrete responses are given in Section 10.5.2.
The likelihood function is proportional to the density of the observed data regarded as a

function of the unknown parameter θ, i.e.,

L(θ) = L(θ; yo) ∝ f(yo; θ),

and measures the relative plausibility of different values of θ as explanations of yo. Weighted
by prior information, the likelihood is a main ingredient in Bayesian approaches to inference,
and, unweighted, it is key to the “pure likelihood” approach (Edwards, 1972; Royall, 1997).
A central issue in using the likelihood function for inference is the distribution of L(θ; y) in
repeated sampling under f(y; θ). This is needed in order to calibrate inferences based on the
likelihood function, i.e., to ensure that their stated properties are correct under repeated
sampling from the model. Calibration is essential to give inferences objective validity, ideally
while respecting basic principles of inference, such as conditionality and sufficiency. One
important approach to calibration is through the notion of a significance function, to be
developed in Section 10.2.2.
We denote the log likelihood by ℓ(θ) = logL(θ), and derivatives by subscripts, such as

ℓθ(θ) = ∂ℓ(θ)/∂θ and ℓθθ(θ) = ∂2ℓ(θ)/∂θ∂θT, which are respectively a column vector and
a matrix. The observed information function is ȷ(θ) = −ℓθθ(θ). The classical asymptotic
theory for likelihood-based inference is derived under the following smoothness conditions
on the model (Davison, 2003, Section 4.4.2):

i. the true value of θ is interior to the parameter space Θ;

ii. the densities {f(y; θ) : θ ∈ Θ} are distinct and have common support;

iii. there is a neighbourhood N of the true value of θ within which the first
three derivatives of ℓ(θ) with respect to θ exist, and for j, k, l = 1, . . . , p,
n−1E{|ℓθjθkθl(θ)|} is uniformly bounded for θ ∈ N ;

iv. the expected Fisher information matrix I(θ) = E{ȷ(θ)} is finite and positive
definite, and I(θ) = E{ℓθ(θ)ℓTθ (θ)}.

Chapter 16 of van der Vaart (1998) gives weaker conditions for the limiting distributional
results now described.
When θ is a scalar, this classical theory provides three basic distributional approximations

for inference:

s = s(θ; y) = ℓθ(θ)ȷ
−1/2(θ̂)

.∼ N(0, 1), (10.1)

t = t(θ; y) = (θ̂ − θ)ȷ1/2(θ̂)
.∼ N(0, 1), (10.2)

r = r(θ; y) = sign(θ̂ − θ)[2{ℓ(θ̂)− ℓ(θ)}]1/2 .∼ N(0, 1), (10.3)
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where the maximum likelihood estimator, θ̂, is assumed to satisfy ℓθ(θ̂) = 0. The
approximations (10.1)–(10.3) are derived from the central limit theorem for ℓθ(θ), which
is Op(n

1/2) in independent sampling, as Eθ{ℓθ(θ)} = 0 and varθ{ℓθ(θ)} = O(n) under

conditions (i)–(iv). Their derivations also rely on the consistency of θ̂ for θ, and the
convergence of the observed Fisher information to its expectation.
Each of s, t and r depends on both θ and the data y. The distributional approximations

in (10.1)–(10.3) are all with reference to the distribution of y under the model f(y; θ), and
s(θ; y), t(θ; y) and r(θ; y) are approximate pivots, i.e., functions of the data and a parameter
whose distribution is known, at least approximately. Thus if y is fixed at yo, then s(θ; yo),
t(θ; yo) and r(θ; yo) can be used to obtain the significance functions Φ(s), Φ(q), or Φ(r),
where Φ(·) is the distribution function for a standard normal random variable.
Versions of (10.1), (10.2) and (10.3) are also available for vector-valued θ. We write

θ = (ψ, λ), where ψ is a scalar parameter of interest and λ is a nuisance parameter. The

profile log likelihood ℓp(ψ) = ℓ(ψ, λ̂ψ) can be used to define analogous pivotal quantities,

s = ℓ′p(ψ)ȷ
−1/2
p (ψ̂)

.∼ N(0, 1),

t = (ψ̂ − ψ)ȷ1/2p (ψ̂)
.∼ N(0, 1), (10.4)

r = sign(ψ̂ − ψ)[2{ℓp(ψ̂)− ℓp(ψ)}]1/2
.∼ N(0, 1),

where the prime denotes differentiation with respect to ψ, λ̂ψ is the constrained maximum
likelihood estimator for λ for ψ fixed, and

ȷp(ψ) = ȷψψ(θ̂ψ)− ȷψλ(θ̂ψ)ȷ
−1
λλ (θ̂ψ)ȷλψ(θ̂ψ).

We use the shorthand θ̂ψ = (ψ, λ̂T

ψ)
T, and partition the observed information matrix as

ȷ(θ) =

(
ȷψψ(θ) ȷψλ(θ)
ȷλψ(θ) ȷλλ(θ)

)
,

with ȷψλ(θ) = −∂2ℓ(θ)/∂ψ∂λT, and so forth.
The normal approximations to the distributions of s, t and r are equivalent to first order,

but that for r respects any asymmetry of the log likelihood about its maximum, whereas
that for t does not, which suggests that for complex problems these approximations may
be inadequate. Their generally poor performance in models with many nuisance parameters
has been borne out in empirical work.
The approximations (10.1)–(10.4) are usually derived from Taylor series expansion of the

score equation ℓθ(θ̂) = 0 that defines the maximum likelihood estimate. A more elegant, but
more difficult, approach shows that the log likelihood, as a function of θ, converges to the
log likelihood for a normal distribution. See, for example Fraser and McDunnough (1984)
for a Taylor-series type approach to this and LeCam (1960) or van der Vaart (1998, Ch. 6)
for a related approach that LeCam called “local asymptotic normality”. We will return to
this in describing the p∗ approximation in Section 10.2.3.
In some settings we may be able to construct exact significance functions, using principles

of sufficiency and ancillarity, which we now describe.

10.2.2 Significance Functions

There are two ideal settings for exactly calibrating inference on a scalar parameter θ. In
the first, Y can be reduced to a scalar minimal sufficient statistic S, giving the significance
function, sometimes also known as a p-value function,

po(θ) = pr(S ≤ so; θ), (10.5)
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which without loss of generality we suppose to be decreasing in θ. The quantity P o(θ)
obtained by treating so as random has a uniform distribution under sampling from the model
f(y; θ), and this allows the calibration of inferences described in Section 10.2.1. For example,
the limits of a (1 − 2α) confidence interval (θα, θ1−α) for θ are the solutions of equations
po(θα) = 1−α and po(θ1−α) = α. Likewise, the evidence against the hypothesis that θ = θ0
with alternative θ ̸= θ0 may be summarised by the p-value 2min{po(θ0), 1 − po(θ0)}. The
exact uniform distribution of P o(θ) under repeated sampling from f(y; θ) implies that both
of these inferential summaries are perfectly calibrated, in the sense that they have exactly
their stated properties: the confidence interval contains the true θ with probability 1− 2α
and the p-value is uniformly distributed.
In the second ideal setting there is a known transformation from Y to a minimal sufficient

statistic (S,A), where S is scalar and A is ancillary, i.e., its distribution does not depend
on θ. The role of A can be understood by noting that the density f(y; θ) factorises as
f(s | a; θ)f(a). We can therefore envisage the data as arising first by generating A and then
generating S conditional on A. But as the first step does not depend on θ, the relevant
subset of the sample space for inference about θ fixes the observed value ao of A (Cox,
1958). Thus we should base inference for θ on the significance function

po(θ; ao) = pr(S ≤ so | A = ao; θ), (10.6)

which provides perfectly calibrated inferences, conditionally on the observed value of the
ancillary statistic A. Now the limits of an exact (1 − 2α) confidence interval for θ, the
solutions of equations po(θ; ao) = α and po(θ; ao) = 1− α, depend on ao, thus emphasising
how conditioning on the ancillary statistic A affects the precision of inferences.
Expressions (10.5) and (10.6) are functions of θ, evaluated only at the observed data.

Example 10.1

Suppose that Y1/θ and Y2θ are independent gamma variables with unit scale and shape
parameter n; their joint density function is

f(y1, y2; θ) =
(y1y2)

n−1

{Γ(n)}2
exp (−y1/θ − y2θ) , y1, y2 > 0, θ > 0,

and the minimal sufficient statistic is (Y1, Y2). We set S = (Y1/Y2)
1/2 and A = (Y1Y2)

1/2,
which is ancillary, and note that since Y1 = AS and Y2 = A/S, we have yT = (y1, y2) =
(as, a/s), so |∂(y1, y2)/∂(a, s)| = 2a/s and

f(s | a; θ) = 1

sI(a)
exp {−a(s/θ + θ/s)} , a, s > 0, θ > 0,

where I(a) =
∫∞
−∞ exp(−2a coshu) du is a normalising constant. The significance function

(10.6) is readily obtained by numerical integration of f(s | ao; θ) over the interval (0, so).
The log likelihood for this model can be written as

ℓ(θ; s, a) ≡ −a(s/θ + θ/s), θ > 0,

so the maximum likelihood estimator is θ̂ = s and the observed information is ȷ(θ̂) = a/s2.
Larger values of the ancillary a yield more precise inferences, because the standard error
for θ̂, ȷ−1/2(θ̂) = s/a1/2, diminishes as a increases.



214 Handbook of Bayesian, Fiducial, and Frequentist Inference

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

theta

S
ig

n
if
ic

a
n

c
e

 f
u

n
c
ti
o

n

0 1 2 3 4 5 6 0 1 2 3 4 5 6

−
6

−
5

−
4

−
3

−
2

−
1

0

theta

L
o

g
lik

e
lih

o
o

d

FIGURE 10.1
Inference for gamma example. Significance functions pr(s ≤ so | a; θ) (left) and log
likelihoods (right) for a = 3 (solid) and a = 6 (dots). The horizontal lines in the left-
hand panel are at 0.025, 0.5 and 0.975; the intersections of the highest and lowest of
these with the significance functions give the limits of exact 95% confidence intervals. The
horizontal lines in the right-hand panel are at −1.92 and −3.32, and their intersections
with the log likelihoods show the limits of 95% and 99% confidence intervals based on the
approximation (10.3).

Figure 10.1 shows the significance and log likelihood functions when so = 1.6 and
ao = 3, 6. They are more concentrated when ao = 6, resulting in shorter confidence intervals.
Both log likelihood functions show clear asymmetry, suggesting that normal approximation
based on t is badly calibrated and would provide poor inferences; indeed, the symmetric
approximation (10.2) could produce negative confidence limits.
Though rarely met in practice, the settings above provide blueprints for more complex

situations, in which several complications may arise:

� θ consists of a parameter ψ of interest, often scalar, and a vector λ of nuisance
parameters. Even if there is a direct analogue of S, the significance functions (10.5)
and (10.6) will typically depend on the unknown λ;

� the reduction to a minimal sufficient statistic of dimension p applies principally in
linear exponential family models. No mapping y 7→ (s, a) can be found in general, so
exact inferences are mostly unavailable; and

� the interest parameter ψ may be a vector. We shall not consider this situation here,
but Section 10.7.2 has pointers to related approaches.

Significance functions were emphasised as a primary tool for inference in Fraser (1991).
Fraser (2019) described many summaries that are then directly available: confidence limits
and p-values, as described above, as well as aspects of fixed-level testing. Power, for
example, is reflected in the “steepness” of the function. There is a close connection between
significance functions and confidence distributions (Cox, 1958; Efron, 1993; Xie and Singh,
2013).
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10.2.3 Likelihood as Pivot

A fruitful approach to improved approximations is to use the log likelihood more
directly—Hinkley (1980) referred to the likelihood function itself as a pivot. One reason
this provides more precise calibration of our inferences is that it is closely related to
a saddlepoint approximation (Daniels, 1954), which can be uncannily accurate. The
saddlepoint approximation can be applied to the density of the maximum likelihood
estimator, leading to the p∗ approximation, also called “Barndorff-Nielsen’s formula”
(Barndorff-Nielsen, 1980):

p∗(θ̂ | a; θ) = c|ȷ(θ̂)|1/2 exp{ℓ(θ)− ℓ(θ̂)}, (10.7)

where ℓ(θ) = ℓ(θ; θ̂, a), with (θ̂, a) a transformation of the sample y = (y1, . . . , yn) such
that a is ancillary. Pivoting this approximate density (10.7), which is supported on Rp,
provides confidence intervals or regions for θ, and since a is ancillary no information about
the parameter is lost by conditioning. However to compute the approximation requires
calculation of the transformation from y to (θ̂, a), which can be very difficult. Moreover,
computation of a significance function requires only a good approximation at the observed
data point, whereas using (10.7) would require high accuracy for all (θ̂, a).
An approach intermediate between using the limiting normal form for the log likelihood

and using (10.7) was introduced in Fraser (1988). His tangent exponential model
approximation to the density f(y; θ), defined for y ∈ Rn and θ ∈ Rp, is a model on Rp
that implements conditioning on an approximately ancillary statistic a. Its expression is

fTEM(s | a; θ) = exp[sTφ(θ) + ℓ{θ(φ); yo}]h(s). (10.8)

This has the structure of a linear exponential family model for a constructed sufficient
statistic s ∈ Rp and constructed canonical parameter φ(θ) ∈ Rp, with −ℓ(θ; yo) playing the
role of the cumulant generator. If the underlying density is in the exponential family, then
φ(θ) is simply the canonical parameter. In more general models the canonical parameter φ(θ)
may depend on the data yo, and is constructed using principles of approximate ancillarity,
as described in Section 10.5.1.
In the next section, we show how this tangent exponential model is built on the exact

significance functions of Section 10.2.2, but incorporates aspects of direct approximation of
the log likelihood.

10.3 Approximate Conditional Inference

10.3.1 Ancillary and Sufficient Directions

Below we describe a general approach to approximate but accurate inference when the
dimension p of the parameter vector θ is less than the dimension n of the data y. We
assume that the components of y are independent and that the regularity conditions outlined
in Section 10.2.1 hold. The tangent exponential model is often said to have “asymptotic
properties”, which essentially is shorthand for the assumption that the expansions in
Section 10.6 have the behaviour in n indicated there, i.e., the log-density is differentiable in
both θ and y up to quartic terms, and the standardised derivatives decrease in powers of
n−1/2.
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For a heuristic development we suppose initially that there is a smooth bijection between
y and (s, a), where s and a have respective dimensions p and n− p, and a is ancillary. The
conditionality principle implies that inference should be based on the conditional density
f(s | ao; θ), so the reference set for frequentist inference is Ao = {y ∈ Rn : a(y) = ao}, i.e.,
the p-dimensional manifold of the sample space on which the ancillary statistic equals its
observed value ao. The bijection between y and (s, a) implies that Ao can be parametrised
in terms of s, at which point its tangent plane Ts is determined by the columns of the n× p
matrix

∂y(s, ao)

∂sT
. (10.9)

In particular, the tangent plane T o to Ao at so is determined by

V =
∂y(s, ao)

∂sT

∣∣∣∣
s=so

. (10.10)

The columns of V have been called ancillary directions, because they are derived from the
ancillary manifold Ao at s = so, but one can argue that this is a misnomer: the p columns
of V determine how y changes in the direction of s locally at so, so they might better be
called sufficient directions, and we shall use this term below. The ancillary statistic itself
varies locally at ao in the n− p directions orthogonal to the columns of V .
Suppose for simplicity that θ and S are scalar. Then

pr(S ≤ so | A = ao; θ) ∝
∫ so

−∞
f(s, ao; θ) ds. (10.11)

The log likelihood ℓ(θ; s, a) = log f(s, a; θ) is a sum of n contributions and therefore has
order n. A change of variables can be used to ensure that s is Op(1) and then, for s =
so +Op(n

−1/2), Taylor series expansion gives

ℓ(θ; s, ao) = ℓ(θ; so, ao) + (s− so)
∂ℓ(θ; s, ao)

∂s

∣∣∣∣
s=so

+ · · · , (10.12)

where the first term on the right-hand side is of order n, the second is the product of a term
of order n−1/2 with one of order n and is therefore of order n1/2, and the remainder is O(1).
Standard first-order results, such as that leading to a significance function from applying
the asymptotic approximation (10.3) to the signed likelihood root

ro(θ) = sign(θ̂o − θ)
[
2
{
ℓ(θ̂o; so, ao)− ℓ(θ; so, ao)

}]1/2
,

use only the first term on the right of (10.12), and have error of order n−1/2 for one-sided
confidence intervals. We hope to reduce this error to order n−1, so-called second-order
inference, by including the second term. Although r(θ) involves only the value of the log
likelihood, an approximation based on both terms in (10.12) also requires the derivative
of ℓ with respect to s, a so-called sample space derivative. Approximation (10.12) yields a
version of the tangent exponential model (10.8), here specialised to the case where we can
identify (s, a) directly.
In Section 10.4, we describe the building blocks for exponential family models, but we

first return to the example in Section 10.2.2.
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Example 10.1 (ctd)

We previously saw that yT(s, a) = (y1, y2) = (as, a/s), yielding

∂y(s, a)

∂s
=

(
a

−a/s2
)
, V =

(
ao

−ao/so2
)
,

∂ℓ(θ; s, a)

∂s
= −a(θ−1 − θs−2).

The left-hand panel of Figure 10.2 shows f(y1, y2; θ), the conditional sample space Ao and
its tangent space T o for ao = 3 and so = 1.6. The right-hand panel shows the logarithm
of the conditional density f(s | ao; θ) and its tangents at so for θ equal to 1, to θ̂o = 1.6
and to 2.2. The filled circles show f(so | ao; θ) for these values of θ, i.e., the corresponding
likelihood values. Notice that θ = φb + {φ2b2 + (so)2}1/2, where b = (so)2/(2ao), can be
expressed in terms of φ(θ) = ∂ℓ(θ; so, ao)/∂s, thus parametrising the model in terms of
the slope of the tangent to the log density at yo; in this model, this is a data-dependent
parametrisation, to which we return below. □

10.3.2 Computation of V

At first sight the definition of V at (10.10) suggests that the mapping y 7→ (s, a) must be
known. In fact this is not the case, as we see if we write

V =
∂y

∂sT

∣∣∣∣
y=yo

=
∂y

∂θT

∣∣∣∣
y=yo

×
(
∂s

∂θT

)−1
∣∣∣∣∣
y=yo

. (10.13)

The second matrix on the right has dimension p× p and is invertible, so the column space
of V is also the column space of the first matrix on the right; both define the same space of
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FIGURE 10.2
Conditional inference for gamma example. Left: joint density f(y; θ) with θ = 1, yo =
(4.8, 1.875), giving ao = 3 and so = 1.6. The white filled circle shows yo and the black filled
circle shows f(yo; θ). The conditional reference set Ao is shown by the dashed white line
and the density f{y(s, ao); θ} on Ao is shown by the solid line. The tangent plane T o is
shown by the dotted white line. Right: Log conditional density f(s | ao; θ) (curved) and its

tangents at log f(so | ao; θ) (straight) for θ = θ̂o (solid), θ = 1 (dashes) and θ = 2.2 (dots).
The filled circles are at f(so | ao; θ).
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sufficient directions, but ∂y/∂θT does not require y to be expressed in terms of (s, a). Hence
V could be right-multiplied by any invertible p×p matrix of constants without changing the
span of the sufficient directions. Below we shall generally take V to be ∂y/∂θT, evaluated

at y = yo and θ = θ̂o.
Although it is not customary to express y as a function of θ, it is natural to do so when

considering how a dataset would be simulated. In a regression model, for example, we can
write θ = (β, σ) and

y(θ) = Xβ + σε, (10.14)

with the design matrix X and error vector ε fixed, giving

V =

(
∂y

∂βT
,
∂y

∂σ

)∣∣∣∣
y=yo

= (X, ε)|y=yo = (X, (yo −Xβ̂o)/σ̂o), (10.15)

where θ̂o = (β̂o, σ̂o) are maximum likelihood estimates computed from the data yo. One way
to think about (10.14) is as a quantile function, or structural equation, whereby changes in
θ are reflected in changes to y for fixed ε.
An alternative approach to deriving V is to note that if the yj are independent and have

distribution functions Fj(·; θ), then the pivotal equation F (yj ; θ) = uj for some fixed uj
implicitly defines how yj depends on θ. Total differentiation of this equation with respect
to θT yields

0 =
duj
dθT

=
∂yj
∂θT

∂F (yj ; θ)

∂yj
+
∂F (yj ; θ)

∂θT
,

which implies that

∂yj
∂θT

= −
{
∂Fj(yj ; θ)

∂yj

}−1
∂Fj(yj ; θ)

∂θT
. (10.16)

In the case of a regression model, we have

Fj(yj ;β, σ) = F{(yj − xT

j β)/σ},

where xT
j is the jth row of X and ε1, . . . , εn

iid∼ F , which gives (10.15) when evaluated at
yo.
In group transformation models, there is no need to invoke the distribution function

Fj , because one can write yj = gj(θ, εj) for a known function gj and an error εj whose
distribution does not depend on θ. Then V can be computed as ∂yj/∂θ for fixed εj , or
equivalently

∂yj
∂θT

= −
{
∂εj(yj ; θ)

∂yj

}−1
∂εj(yj ; θ)

∂θT
.

This construction is used in the bivariate normal example of Section 10.5.2. The derivation
of the sufficient directions in Fraser and Reid (1995) and Fraser and Reid (2001) builds on
the local location model of Fraser (1964); see Section 10.7.3.
The construction in terms of a structural equation such as (10.14) does not apply to

discrete models, which require a slightly different treatment. We discuss the construction of
the sufficient directions V further in Section 10.5.2.
In the next section, we outline the accurate approximation of significance functions in

continuous exponential families.
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10.4 Exponential Family Inferences

10.4.1 One-Parameter Case

Consider a continuous one-parameter exponential family with a scalar parameter θ,
expressed as a tilted version of a baseline density f0(y),

f(y; θ) = f0(y) exp [n {s(y)θ − κ(θ)}] , (10.17)

with canonical statistic ns(y), canonical parameter θ and cumulant generator nκ(θ). The
marginal density of the sufficient statistic s is of the same form,

f(s; θ) = h0(s) exp [n {sθ − κ(θ)}] , (10.18)

where h0(s) =
∫
1{y ∈ Rn : s(y) = s}f0(y)dy. Here s is assumed to be an average of

n independent observations, so its variation around its mean κθ(θ) is Op(n
−1/2). Writing

densities explicitly in terms of the sample size n, as in (10.17) or (10.18), is a technical
device that helps in keeping track of powers of n in theoretical development, but it does not
change the quality of subsequent approximations and is unnecessary when applying them.
Although the integral defining h0 is not usually available in closed form, the saddlepoint

approximation can be used to approximate f(s; θ) very accurately. And as θ̂ satisfies s =

κθ(θ̂), this gives an approximation to the density of θ̂ (e.g., Davison, 2003, equation (12.32)):

f(θ̂; θ) = c ȷ̂ 1/2 exp
{
ℓ(θ; θ̂)− ℓ(θ̂; θ̂)

}{
1 +O(n−1)

}
, (10.19)

where ȷ̂ = nκθθ(θ̂) is the observed information evaluated at θ = θ̂, and the normalising
constant c ensures that (10.19) has unit integral. Our goal below is to use (10.19) to obtain

a convenient and general expression for the significance function pr(θ̂ ≤ θ̂o; θ), where θ̂o is

the observed value of θ̂.
We first make a monotone change of variable θ̂ 7→ r(θ), where

r(θ) = sign(θ̂ − θ)
[
2
{
ℓ(θ̂; θ̂)− ℓ(θ; θ̂)

}]1/2
The Jacobian of this transformation may be obtained from the derivative

r(θ)
∂r(θ)

∂θ̂
=

∂ℓ(θ; θ̂)

∂θ

∣∣∣∣∣
θ=θ̂

+
∂ℓ(θ; θ̂)

∂θ̂

∣∣∣∣∣
θ=θ̂

− ∂ℓ(θ; θ̂)

∂θ̂
,

= ℓ;θ̂(θ̂; θ̂)− ℓ;θ̂(θ; θ̂),

where here and below the appearance of a variable after a subscripted semi-colon indicates
a sample-space derivative with respect to that variable. Differentiation with respect to θ̂ is
necessitated by the change of variable θ̂ 7→ r(θ). For the exponential model, we have

r(θ)
∂r(θ)

∂θ̂
= nκθθ(θ̂)(θ̂ − θ) = ȷ̂ (θ̂ − θ),

and (10.19) becomes

f{r(θ); θ} = c
r(θ)

q(θ)
exp

{
−r(θ)2/2

}
, (10.20)
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where the Wald statistic for θ,

q(θ) = ȷ̂ 1/2(θ̂ − θ) = ȷ̂−1/2
{
ℓ;θ̂(θ̂; θ̂)− ℓ;θ̂(θ; θ̂)

}
,

has an asymptotic standard normal distribution; see (10.2), where q is called t.

As θ → θ̂ we have r(θ), q(θ) → 0, but it is possible to show that, using an abbreviated
notation, q = r + a1r

2/n1/2 + a2r
3/n + · · · , so there is no singularity in (10.20). Taylor

series expansion of the logarithm yields

1

r
log
(q
r

)
= a1n

−1/2 + (a2 − a21/2)rn
−1 +O(n−3/2), (10.21)

so the square of (10.21) is of order n−1. This is useful in the next step.
It follows from (10.21) that a second change of variable

r(θ) 7→ r∗(θ) = r(θ) +
1

r(θ)
log

{
q(θ)

r(θ)

}
(10.22)

has Jacobian 1+(a2−a21/2)/n+O(n−3/2) = 1+O(n−1). That the coefficient of the 1/n term
is constant in r is important for renormalisation, discussed in Section 10.4.4. Although the
transformation (10.22) may not be strictly monotonic over its entire range, it is monotone
to the order considered here. After this transformation and a little more algebra, (10.20)
becomes

f{r∗(θ); θ} = c exp
{
−r∗(θ)2/2

}{
1 +O(n−1)

}
. (10.23)

We deduce that c = (2π)−1/2{1 +O(n−1)}, so the significance function may be written

pr(θ̂ ≤ θ̂o; θ) = pr {r∗(θ) ≤ r∗o(θ); θ}
= Φ {r∗o(θ)}

{
1 +O(n−1)

}
, (10.24)

where r∗o(θ) is the value of r∗(θ) actually observed, i.e., with y and θ̂ replaced by yo and θ̂o.
The discussion in Section 10.5.1 then allows inference on θ by treating r∗o(θ) as a realisation
of a standard normal variable. An alternative to (10.24) with the same order of asymptotic
error is the Lugannani–Rice (1980) formula

pr
(
θ̂ ≤ θ̂o; θ

)
.
= Φ {ro(θ)}+

{
1

ro(θ)
− 1

qo(θ)

}
ϕ {ro(θ)} , (10.25)

where ϕ denotes the standard normal density function and ro(θ) and qo(θ) are the
ingredients to r∗o(ψ). Both (10.24) and (10.25) are typically highly accurate, with neither
systematically better than the other in applications, but they can become numerically
unstable for θ near θ̂ and dealing with this may require some careful programming. In
Section 10.4.4 we show that when the density is renormalised to integrate to unity the
relative error in (10.24) and (10.25) becomes O(n−3/2), as is that in (10.23).
Expression (10.21) shows that the second term of r∗(θ) is an O(n−1/2) correction to the

O(1) quantity r(θ); recall the second term on the right-hand side of (10.12).

10.4.2 Linear Exponential Family

The previous argument generalises to a linear exponential family in which θT = (ψ, λT)
consists of a scalar parameter ψ of interest and a nuisance parameter λ of dimension p− 1.
In this case,

f(s; θ) = h(s) exp [n {sTθ − κ(θ)}] ,
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where s(y)T = (s1, s2) is partitioned conformably with θ. In this model the conditional
density of s1 given s2 does not depend on λ, and the ratio of the saddlepoint approximations
to the densities of (s1, s2) and of s2 yields the approximation

f(s1 | s2;ψ)
.
= c

{
|ȷλλ(θ̂ψ)|
|ȷ(θ̂)|

}1/2

exp
{
ℓ(θ̂ψ)− ℓ(θ̂)

}
, (10.26)

where θ̂ψ = (ψ, λ̂T

ψ)
T denotes the maximum likelihood estimator for fixed ψ and ȷλλ(θ) is

the sub-matrix of ȷ(θ) corresponding to λ. A calculation similar to that leading to (10.23)
establishes that apart from a relative error of order n−1, the resulting significance function
for inference on ψ, pr(S1 ≤ so1 | S2 = s2;ψ) is again of form (10.24), now with

r(ψ) = sign(ψ̂ − ψ)
[
2
{
ℓ(θ̂)− ℓ(θ̂ψ)

}]1/2
, (10.27)

q(ψ) = (ψ̂ − ψ)

{
|ȷ(θ̂)|

|ȷλλ(θ̂ψ)|

}1/2

(10.28)

evaluated at the observed data yo and maximum likelihood estimate θ̂o. Note that

q(ψ) = t(ψ)ρ(ψ, ψ̂), ρ(ψ, ψ̂) =

{
|ȷλλ(θ̂)|
|ȷλλ(θ̂ψ)|

}1/2

,

with t(ψ) the Wald statistic based on the profile log likelihood defined in (10.4). For
derivations of these results see Fraser and Reid (1993) or Davison (2003, Section 12.3.3),
for example.
Although expression (10.24) was derived by approximating a conditional distribution, it is

also an approximation to the marginal distribution of r∗(ψ), because the normal distribution
of r∗(ψ) in (10.24) does not depend on the conditioning variable S2.
If the parameter of interest is a linear function of the natural parameter θ of the

exponential model, say ψ = CT
1 θ for some known p× 1 vector C1, then we can set λ = CT

2 θ,
so that φT = (ψ, λT) = θT(C1, C2) = θTC, say, where the p × p matrix C is invertible,
express the exponential family in terms of

s∗(y) = C−1s(y), φ(θ) = CTθ, κ∗(φ) = κ(C−Tφ) = κ(θ),

and finally apply approximation (10.24) in this reparametrised model.

10.4.3 General Exponential Family

We now extend the normal approximation to the distribution of r∗, developed in the previous
section, to the general exponential family

f(s; θ) = h(s) exp [n {sTφ(θ)− κ(θ)}] , (10.29)

where φ(θ) may be a nonlinear function of (ψ, λ). For this we shall need the analogues of
r(ψ) and q(ψ) of (10.27) and (10.28). The likelihood is invariant to reparametrisation, so
r(ψ) is unchanged, but as ψ is no longer a component of the canonical parameter φ, we

need a new form for q(ψ) using a surrogate for ψ. Taylor series expansion for small θ̂ − θ̂ψ
gives

φ(θ̂)− φ(θ̂ψ) =
∂φ(θ̂ψ)

∂θT
(θ̂ − θ̂ψ) + · · · ,
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so if the matrix on the right-hand side is invertible at θ̂ψ, which is a condition for θ to be
identifiable, then

θ̂ − θ̂ψ =

{
∂φ(θ̂ψ)

∂θT

}−1 {
φ(θ̂)− φ(θ̂ψ)

}
+ · · · , (10.30)

and as the partial derivatives satisfy

Ip =
∂θ

∂φT

∂φ

∂θT
=

(
∂ψ/∂φT

∂λ/∂φT

)(
∂φ/∂ψ ∂φ/∂λT

)
=

(
∂ψ
∂φT

∂φ
∂ψ

∂ψ
∂φT

∂φ
∂λT

∂λ
∂φT

∂φ
∂ψ

∂λ
∂φT

∂φ
∂λT

)
, (10.31)

the first row of the inverse on the right-hand side of (10.30) is ∂ψ/∂φT, yielding

ψ̂ − ψ =
∂ψ(θ̂ψ)

∂φT

{
φ(θ̂)− φ(θ̂ψ)

}
+ · · · .

Hence q(ψ) should be based on a local departure of θ̂ from θ̂ψ, or equivalently of φ̂ from
φ̂ψ, which can be measured through the constructed parameter χ(θ) given by

χ(θ) = uTφ(θ), u =
∂ψ(θ̂ψ)/∂φ∥∥∥∂ψ(θ̂ψ)/∂φ∥∥∥ ,

i.e., the orthogonal projection of φ(θ) onto a unit vector u parallel to ∂ψ(θ̂ψ)/∂φ; note that

χ(θ) depends on the data through θ̂ψ. The Wald-type measure q from (10.28) for χ(θ) is

q(ψ) = sign(ψ̂ − ψ)
∣∣∣χ(θ̂)− χ(θ̂ψ)

∣∣∣ { |ȷ(φ̂)|
|ȷ(λλ)(φ̂ψ)|

}1/2

, (10.32)

where the determinants are computed in the φ parametrisation,

|ȷ(φ̂)| =
∣∣∣ȷ(θ̂)∣∣∣ ∣∣∣∣∣∂φ(θ̂)∂θT

∣∣∣∣∣
−2

,
∣∣ȷ(λλ)(φ̂ψ)∣∣ = ∣∣∣ȷλλ(θ̂ψ)∣∣∣

∣∣∣∣∣∂φT(θ̂ψ)

∂λ

∂φ(θ̂ψ)

∂λT

∣∣∣∣∣
−1

, (10.33)

and the second factor on the right-hand side of the second expression here stems from the
“area formula” (see, for example, Krantz and Parks, 2008, Lemma 5.1.4). An equivalent
expression for q(ψ) is obtained by substituting these expressions and simplifying, yielding

q(ψ) =
|φ(θ̂)− φ(θ̂ψ) ∂φ(θ̂ψ)/∂λ

T|∣∣∣∂φ(θ̂)/∂θT

∣∣∣ ×

{
|ȷ(θ̂)|

|ȷλλ(θ̂ψ)|

}1/2

. (10.34)

If φT = (ψ, λT), then (10.34) reduces to (10.28).
The equivalence of (10.32) and (10.34) follows by noting that the determinant of the p×p

matrix (
φ(θ̂)− φ(θ̂ψ) ∂φ(θ̂ψ)/∂λ

T

)
is the signed volume l1v2 of the parallelepiped generated by its p columns, with l1 the length
of the component of its first column in the direction orthogonal to its other columns and
v2 the volume of the (p− 1)-dimensional parallelepiped these last columns generate (Fraser
et al., 1999; Skovgaard, 1996), which is

v2 =

∣∣∣∣∣∂φT(θ̂ψ)

∂λ

∂φ(θ̂ψ)

∂λT

∣∣∣∣∣
1/2

.

As the vector ∂ψ(θ̂ψ)/∂φ is orthogonal to ∂φ(θ̂ψ)/∂λ
T, we have l1 =

∣∣∣χ(θ̂)− χ(θ̂ψ)
∣∣∣; the

sign of ψ̂ − ψ supplies the sign of l1v2.
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Example 10.2

To illustrate the development above, consider independent exponential variables y1 and y2
with rate parameters λψ and λ; here θ = (ψ, λ)T. The corresponding log likelihood is

ℓ(ψ, λ) = 2 log λ+ logψ − λ(ψy1 + y2), ψ, λ > 0,

leading to λ̂ψ = 2/(ψy1 + y2), λ̂ = 1/y2, ψ̂ = y2/y1, |ȷ(θ̂)| = 1/(λ̂ ψ̂)2 and |ȷλλ(θ̂ψ)| = 2/λ̂2ψ.
The elements of (10.29) are

φ =

(
φ1

φ2

)
= −

(
λψ
λ

)
,

s(y) =

(
y1
y2

)
,

κ(φ) = − log(−φ1)− log(−φ2), φ1, φ2 < 0,

so ψ = φ1/φ2, and fixing ψ is equivalent to forcing φ to lie on a line through the origin of
gradient 1/ψ. Now

∂φ

∂λ
= −

(
ψ
1

)
,

∂ψ

∂φ
=

(
1/φ2

−φ1/φ
2
2

)
=

1

λ

(
−1
ψ

)
.

Hence the unit vector in the direction ∂ψ/∂φ is (1 + ψ2)−1/2(−1, ψ)T, and u is obtained

from this by evaluating it at φ(θ̂ψ); this is orthogonal to ∂φ/∂λ by construction.
To be concrete, let y1 = 1 and y2 = 2, and consider computing the significance function at

ψ = 1. In this case θ̂ψ = (1, 2/3)T, θ̂ = (2, 1/2)T, φ(θ̂ψ) = −(2/3, 2/3)T, φ(θ̂) = −(1, 1/2)T

and u = (−1/
√
2, 1/

√
2)T.

Figure 10.3 shows the log likelihoods, the maximum likelihood estimates and the partial
maximum likelihood estimates in the θ and φ parametrisations. The construction of χ(θ) =

uTφ(θ) in terms of u and φ(θ), shown in the right-hand panel, yields χ(θ̂) = 1/
√
8 and

χ(θ̂ψ) = 0. The difference χ(θ̂) − χ(θ̂ψ) in the constructed parameter is a signed distance
along the dashed line. As ψ varies, the grey line φ1 = ψφ2 and the vector u, which is
orthogonal to that line, also vary. Increasing ψ starting from ψ = 1 would move φ(θ̂ψ)

along the dotted line closer to φ(θ̂), inclining the vector u and the dashed line closer to

vertical and reducing significance by decreasing χ(θ̂) − χ(θ̂ψ). When the grey line passes

though the black square representing φ(θ̂), it coincides with the black circle and the open

square and then χ(θ̂)− χ(θ̂ψ) = 0. Decreasing ψ would move φ(θ̂ψ) along the black dotted

line away from φ(θ̂), inclining the vector u and the dashed line further from the vertical,

and increasing χ(θ̂)− χ(θ̂ψ) and thus the significance. □

10.4.4 Renormalisation

Although the error in (10.24) is ostensibly O(n−1), it is actually O(n−3/2) in wide generality
after renormalisation of the approximation to ensure that it integrates to 1. While in practice
this would be done numerically, we note that if the error term in (10.23) takes the form
B/n where B does not depend on the variable of integration, then

1 =

∫
f{r∗(θ); θ}dr∗ =

∫
c
√
(2π)ϕ{r∗(θ)}{1 +B/n+O(n−3/2)}dr∗

implies
c
√
(2π) = 1−B/n+O(n−3/2),
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FIGURE 10.3
Log likelihoods for exponential example in θ parametrisation (left) and φ parametrisation
(right). The solid grey lines show ψ = 1 or equivalently φ1 = φ2. The overall maximum

likelihood estimates θ̂ and φ(θ̂) are shown by black squares, and the partial maximum

likelihood estimates θ̂ψ and φ(θ̂ψ), with ψ = 1, by black circles. The dotted lines show θ̂ψ
and φ(θ̂ψ) as functions of ψ. The arrows in the right-hand panel show the directions of the

vectors ∂φ(θ̂ψ)/∂λ (light) and ∂ψ(θ̂ψ)/∂φ (heavy). The difference χ(θ̂) − χ(θ̂ψ) appearing

in q(ψ) is a distance along the dotted line, between χ(θ̂ψ) (black filled circle) and χ(θ̂) (open
square).

so (10.23) becomes

f(r∗; θ) = (1−B/n)ϕ{r∗(θ)}{1 +B/n+O(n−3/2)} = ϕ{r∗(θ)}{1 +O(n−3/2)}.

As noted below (10.22), in the linear exponential family with p = 1 we indeed have B free
of r∗. In work as yet unpublished Y. Tang has verified that B is also constant in r∗ for the
multi-parameter linear exponential family treated in Section 10.4.2, and for regression-scale
models (10.14).
If the O(n−1) error term depends on r∗(θ), then under mild conditions

B{r∗(θ)} = B(0) + r∗(θ)B′(s), 0 < |s| < |r∗(θ)|,

and the term B(0)/n cancels with the normalizing constant as above, so we only need
consider

c
√
(2π)ϕ{r∗(θ)}r∗(θ)B′(s).

If B′(s) is constant, then this term integrates to 0 and the norming constant is as before.
If B′(s) depends on r∗, it would have to to rise very rapidly for the error term to be
unbounded, as the normal density function drops rapidly as |r∗(θ)| increases. Slower, but
not constant, dependence of B′ on r∗ would lead to relative error just O(1/n), not improved
by renormalization.
Mild regularity conditions (Daniels, 1956) ensure the validity of this argument, which

also applies to Laplace and similar approximations, including those in Sections 10.4.2
and 10.4.3. A similar analysis verifies that the relative error in the Lugannani–Rice (1980)
approximation (10.25) is also O(n−3/2).
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10.5 General Likelihood

10.5.1 Basic Approximation

Section 10.4 described approximations useful for inference in exponential families. We now
outline how these may be extended to general models, using the tangent exponential
model (10.8). As noted there, the tangent exponential model has the structure of an
exponential family model, with canonical parameter φ and cumulant generator −ℓ(φ; yo).
To compare (10.8) to the general exponential family density (10.29), we take the baseline

density h(s) to be h(s; θ̂o), which effectively centers the score variable s so that so = 0.
Thus we have

fTEM(s | a; θ) = exp{sTφ(θ; yo) + ℓ(θ; yo)}h(s; θ̂o), (10.35)

with canonical variable s and canonical parameter φ(θ) ≡ φ(θ; yo) defined locally at yo, as
we now describe.
In an ordinary exponential family, the canonical parameter can be obtained (up to

linear transformations) from ∂ℓ(θ; s)/∂s. In a general model, φ(θ) is also constructed by
differentiating in the sample space, now using the n × p matrix V of sufficient directions
of Section 10.3. As shown there, projecting onto the space spanned by these directions
implements conditioning on an approximate ancillary statistic without requiring an explicit
form for that ancillary. In more detail,

φ(θ; yo) = ℓ;V (θ; y
o), (10.36)

where

ℓ;V (θ; y
o) =

d

dt
ℓ(θ; yo + V t)

∣∣∣∣
t=0

= V T
∂ℓ(θ; y)

∂y

∣∣∣∣
y=yo

=
n∑
j=1

V T

j

∂ℓ(θ; yoj )

∂yj
,

with t = (t1, . . . , tp)
T; the last equality applies when the yj make independent contributions

ℓ(θ; yj) to the log likelihood. Note that both ℓ(θ; y
o) = log f(yo; θ) and φ(θ; yo) are computed

from the original model f(y; θ).
The validity of this local approximation can be established by Taylor series approximation,

as described in Section 10.6. Taking (10.35) as our starting point, we simply apply the
formulae derived for the general exponential family model in Section 10.4.3, computing
r(ψ) at (10.27) and q(ψ) at (10.34). The approximate significance function for an interest
parameter ψ is Φ{r∗(ψ)}, using (10.22).
The tangent model approximates the original density in a neighbourhood of the observed

data point yo; more precisely the original model and the tangent exponential model have
the same observed log-likelihood function, and the same sample-space derivative of the log-
likelihood function. This turns out to be enough to ensure that the significance function is
accurate to O(n−3/2).
The saddlepoint approximation to (10.35) is

fTEM(s | a; θ) .= c|j(φ̂)|−1/2 exp
[
sT{φ(θ)− φ(θ̂o)}+ ℓ(θ; yo)− ℓ(θ̂o; yo)

]
, (10.37)

where j(φ) is the observed Fisher information computed in the φ parametrisation as
at (10.33), and ℓ(θ; yo) = ℓ{θ(φ); yo}. The validity of this saddlepoint approximation is

verified by Taylor-series expansion of the log likelihood ℓ(θ; s) about θ̂o and so, described
in Section 10.6.
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10.5.2 Generalising V

The matrix V of sufficient directions is central to approximations based on the tangent
exponential model. Our previous discussion has taken V to equal ∂y/∂θT, evaluated at the

observed values yo of the data y and the maximum likelihood estimate θ̂o, but this expression
presupposes that the individual observations yj are scalar and can be differentiated with
respect to θ; the latter is not the case for discrete responses. In this section we outline how
V can be generalised.
As a preliminary remark, notice that the span of V is invariant to smooth invertible

reparametrisation θ 7→ θ′, which has the effect of right-multiplying V by an invertible p× p
matrix of constants; see (10.13). It is readily checked that such a multiplication leaves (10.34)
unchanged, so V can be computed in whatever parametrisation is simplest.
When the yj are continuous and independent vectors of possibly different dimensions dj

we can write

φ(θ) =

n∑
j=1

∂yT
j

∂θ

∣∣∣∣
yj=yoj ,θ=θ̂

o

× ∂ℓ(θ; yj)

∂yj

∣∣∣∣
yj=yoj

=
n∑
j=1

V T

j

∂ℓ(θ; yj)

∂yj

∣∣∣∣
yj=yoj

,

say, where Vj has dimension dj × p. This effectively replaces the matrix V by a tensor.

Example 10.3

If {(y1j , y2j), j = 1, . . . , n} are independent pairs from a bivariate normal distribution with
zero means, unit variances and covariance θ, V can be contructed using the pivotal quantities
z1j = (y1j + y2j)

2/{2(1 + θ)} and z2j = (y1j − y2j)
2/{2(1− θ)}, leading to

Vj =

(
yo2j − θ̂oyo1j

1− θ̂o2
,
yo1j − θ̂oyo2j

1− θ̂o2

)
, j = 1, . . . , n,

and thus to

φ(θ) = ℓ;V (θ) =
θ(to − θ̂oso)− (so − θ̂oto)

(1− θ2)(1− θ̂o2)
,

where t =
∑

(y21j + y22j)/2 and s =
∑
y1jy2j . The sufficient statistics (s, t) emerge naturally

in the construction of φ(θ). If a preliminary reduction to sufficiency is made, the resulting
V is a 2 × 1 vector instead of a 2n × 1 vector as above, though φ(θ) is unchanged. The
sample space contours determined by V are illustrated in Reid (2003), and the accuracy of
the normal approximation to the distribution of r∗ is illustrated in Reid (2005). □

Computing V for discrete responses is more awkward. In Section 10.3.2 we saw that in
the continuous case, total differentiation of the pivot Fj(yj ; θ) led to the expression (10.16)
for Vj , but ∂Fj(y; θ)/∂y = 0 almost everywhere in the discrete case. To deal with this, note
that in a continuous exponential family model with canonical observation yj , we can write
∂ℓ(θ; yj)/∂yj = αj(θ), say, and observe that as

n−1φ(θ) = n−1
n∑
j=1

∂yT
j

∂θ
αj(θ)

= n−1
n∑
j=1

E

(
∂yT

j

∂θ

)
αj(θ) + n−1

n∑
j=1

{
∂yT

j

∂θ
− E

(
∂yT

j

∂θ

)}
αj(θ),
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and each term in the final average has mean zero, that term is Op(n
−1/2). Thus if the order

of integration and differentiation can be interchanged, n−1φ(θ) can be replaced with

n−1φ̃(θ) = n−1
n∑
j=1

∂E(yT
j )

∂θ

∣∣∣∣
θ=θ̂o

αj(θ),

at the expense of introducing an Op(n
−1/2) error. Hence using φ̃(θ) in (10.34) does not

change the O(n−1) error in (10.24). The use of ∂E(yT
j )/∂θ replaces the sufficient directions

with their expectation, which is only tangential to Ao on average, so renormalisation no
longer reduces the order of error to n−3/2: inference accurate to third order is unavailable.
As the expectation of a discrete response is typically continuous in the parameters, this

approach can be applied to discrete exponential family models such as the Poisson, binomial
and multinomial. Extension to more general discrete response distributions entails replacing
αj(θ). Davison et al. (2006) show that one can use a locally-defined score variable wj , and

wj =
∂ℓ(θ; yj)

∂θ

∣∣∣∣
θ=θ̂o

, Vj =
∂E(wj ; θ)

∂θT

∣∣∣∣
θ=θ̂o

, φ(θ) =
n∑
j=1

V T

j

∂ℓ(θ; yj)

∂wj
.

Here wj has dimension p×1, so Vj is a p×p matrix that is easily seen to be the contribution

from yj to the expected information matrix, evaluated at θ̂o. The derivative ∂ℓ(θ; yj)/∂wj
is most easily computed as ∂ℓ(θ; yj)/∂yj × (∂wj/∂yj)

−1.
Skovgaard (1996) derived a version of r∗ that replaces q in (10.22) with a quantity that

is computed entirely from cumulants of the log likelihood. The resulting approximation has
a relative error that is O(n−1) in a large deviation region about the maximum likelihood
estimator. This provides highly accurate results far out into the tails of its distribution,
which Skovgaard argues may be of more practical value than higher, O(n−3/2), accuracy
near its mean. Reid and Fraser (2010) show that Skovgaard’s approximation can be related
to a tangent exponential model with canonical parameter determined from the derivative
of I(θ; θ̂o) =

∫
ℓ(θ; y)f(y; θ̂o)dy. It can also be used for discrete models, and gives the

same approximation as Davison et al. (2006) in curved exponential families, but not more
generally.

10.6 Derivation of the Tangent Exponential Model

10.6.1 Preliminary Remarks

The expression for the tangent exponential model, (10.8), is concise and emphasises the
connection to exponential family models and the role of φ as a canonical parameter,
but does not lend itself to ready understanding. It can be derived using Taylor series
approximations that can be given explicitly when y and θ are scalar and provide some
theoretical illumination. The development for higher dimensions is similar but much more
laborious and does not yield additional insights.
We have seen above that the tangent exponential model requires computation of a first

derivative in the sample space. We can think of this as assessing how the log likelihood
ℓ(θ; yo) changes not only as a function of θ, as is standard in both likelihood and Bayesian
inference, but also as a function of y, in a small neighbourhood of the observed data point yo.
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Employing this first derivative probes ℓ(θ; y) more deeply than simply using the observed
log likelihood function ℓ(θ; yo), but does not involve computing the log likelihood function
on its entire domain, i.e., for (θ, y) ∈ Rp × Rn.

10.6.2 No Nuisance Parameters

Suppose that we have a model f(s; θ), s ∈ R and θ ∈ R, and that there is an implicit
dependence on n, in the sense that ℓ(θ; s) = log f(s; θ) is Op(n). We will address how to get
this reduction in general at the end of this section, but this would be the case for example
if s was the sufficient statistic based on a random sample from a linear exponential family
model, and it is also the case for models like the Cauchy, where s is the maximum likelihood
estimator or any other location-equivariant estimator of θ, based on a sample of size n, and
the distribution is conditional on the (n− 1)-dimensional ancillary statistic a.
We first expand the log likelihood log f(s; θ) in a Taylor series in both s and θ, about the

fixed points so and θ̂o, giving

ℓ(θ; s) = log f(s; θ)

= ℓ(θ̂o; so) + (s− so)ℓs(θ̂
o; so) + (θ − θ̂o)ℓθ(θ̂

o; so)

+
1

2
(s− so)2ℓss(θ̂

o; so) + (s− so)(θ − θ̂o)ℓθs(θ̂
o; so)

+
1

2
(θ − θ̂o)2ℓθθ(θ̂

o; so) + · · ·

=
∞∑

i,j=0

1

i!j!
(θ − θ̂o)i(s− so)jbij , (10.38)

say, where bij = ∂i∂jℓ(θ̂o; so)/∂θi∂sj for i, j = 0, 1, . . . ; note that b10 = 0.
Now consider how expansion (10.38) would differ if f(s; θ) were an exponential family

model with canonical parameter θ and sufficient statistic s. In this case

log f(s; θ) = ℓ(θ; s) = θs− κ(θ)− d(s),

so the coefficients bi0 would be those for a Taylor series expansion of −d(s), the b0j would
be those for a Taylor series expansion of −κ(θ), and the only other non-zero term would be
b11 = 1.
Andrews et al. (2005) showed that for any continuously differentiable model f(s; θ), there

exists a transformation x = x(s) and φ = φ(θ) such that the expansion of log f(x;φ) has
the coefficient array starting with i = j = 0 at the top left and terms bij in row i and
column j, given by



b+
3α4 − 5α2

3 − 12γ

24n

−α3

2n1/2
−
(
1 +

α4 − 2α2
3 − 5γ

2n

)
α3

n1/2
α4 − 3α2

3 − 6γ

n
0 1 0 0

−1 0
γ

n
− α3

n1/2
0

−α4

n


.

(10.39)
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Only terms up to O(n−1) are shown: the terms in the blank spaces are O(n−3/2) or smaller,
as are the terms implicitly omitted. The constants α3, α4 and γ are the derivatives of
log f(x;φ) at x = 0 and φ = 0:

α3 = − ∂3 log f(x;φ)

∂φ3

∣∣∣∣
x=0,φ=0

,

α4 = − ∂4 log f(x;φ)

∂φ4

∣∣∣∣
x=0,φ=0

,

γ =
∂4 log f(x;φ)

∂x2∂φ2

∣∣∣∣
x=0,φ=0

,

and γ is related to the exponential curvature of the model (Efron, 1975). Ignoring terms of
O(n−3/2), the expansion (10.39) in terms of x and φ is almost that of an exponential family
model; the only additional coefficient is the (2, 2) entry γ/n, which adds a term γφ2x2/(4n)
to the log likelihood expansion.
The variables s and θ are both scaled and centered as part of the transformation to x and

φ: note that the observed information −∂2 log f(0; 0)/∂φ2 = −b20 = 1. The point (x, φ) =

(0, 0) corresponds to the original point of expansion (so, θ̂o), where so is the observed value

and θ̂o = θ̂(so) is the corresponding value of the maximum likelihood estimator.
Another way to write the model given by (10.39) is

log f(x;φ) = b00 + P1n(x) + P2n(φ) + xφ+ γx2φ2/(4n) +O(n−3/2),

where P1n(x) is given by the first row of the array and P2n(φ) by its first column, each
omitting b00. On examining the elements of (10.39) we see that we can write

f(x;φ) ∝ ϕ(x− φ)

{
1 +

a1(x, φ)

n1/2
+
a2(x, φ)

n
+ γ

a3(x, φ)

n
+O(n−3/2)

}
, (10.40)

in terms of the standard normal density function ϕ and suitable polynomials a1, a2 and
a3(x, φ) = (x2φ2 − x4 + 5x2 − 2)/4. Equation (10.40) can be integrated term by term with
respect to x; an explicit array for the resulting approximate distribution function F (x;φ)
is given in Andrews et al. (2005). Remarkably, although F (x;φ) depends on γ in general,
F (0;φ) does not depend on γ, because ϕ(x−φ)a3(x;φ) has integral zero over the negative
half-line. As x = 0 corresponds to s = so, the significance function F (so; θ) does not depend
on γ and can be computed using the exponential family version of (10.39), in which γ = 0.
The tangent exponential model (10.8) is just an invariant version of the simplified

expansion (10.40): s is now the transformed variable called x here, and is the corresponding
score variable, and φ is by definition ∂ log fTEM(0; 0)/∂x, the canonical parameter of the
exponential model approximation.
The steps in going from the original model to (10.39) are outlined in Andrews et al. (2005)

and Cakmak et al. (1998).
The reduction to a single variable s in a scalar parameter model is straightforward if,

for example, y = (y1, . . . , yn) is a sample from an exponential family model, with density
function (10.17), as the log likelihood ℓ(θ; s) then equals exp{φ(θ)s − nc(θ)}, where s =∑n
i=1 s(yi), and has the dependence on n summarised in (10.39), with γ = 0.
Similarly, in the case of a sample y = (y1, . . . , yn) from a location model, the exact

distribution of any location-invariant estimator, say s, of the location parameter θ given the
location ancillary statistic a = (y1 − s, . . . , yn − s) is

f(s | a; θ) = exp{ℓ(θ; s, a)}
/∫

t

exp{ℓ(t; s, a)}dt,
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and (10.39) is equivalent to the density approximation arising when Laplace’s method is
applied to the denominator integral.
For more general models, the discussion in Section 10.3 establishes the existence of a

conditional distribution on R that can be determined by finding the n × 1 vector V of
sufficient directions. The arguments above show that this conditional distribution, which
now has a scalar variable and scalar parameter, is effectively an exponential family for the
purpose of approximating the significance function.

10.6.3 Nuisance Parameters

The expansion in (10.39) can be generalised to vector parameters, as in Cakmak et al.
(1994) and Fraser and Reid (1993), but the notation is cumbersome, and the various multi-
dimensional analogues to α3, α4, γ are not explicitly available. However, the expansion
verifies that the coordinate-free version of the tangent exponential model has the form
given at (10.8) and (10.35), with saddlepoint approximation (10.37).
This gives a tangent exponential model on Rp for inference about θ, which is implicitly

conditioned on an approximate ancillary statistic through the use of the n × p matrix V ,
and this is now the full model used to obtain an approximate significance function for a
scalar parameter of interest ψ.
In this full model, consider fixing ψ, and constructing a new tangent exponential model

on Rp−1 with parameter λ. We can write, suppressing the conditioning on a,

fTEM(s; θ) = f1,TEM(sψ | ãψ;λ)f2(ãψ), (10.41)

where ãψ is a new approximate ancillary statistic for the model with ψ held fixed. This
gives us a one-dimensional distribution for inference about ψ,

f2(ãψ) = fTEM(s; θ)/f1,TEM(sψ | ãψ;λ),

and as we know the left-hand side is free of both sψ and λ, we can choose sψ = 0 and λ = λ̂ψ.
Using the saddlepoint form (10.37) of the tangent exponential model in the numerator and
denominator yields a model on R of the form

h(s;ψ) = c exp{ℓ(φ̂ψ; s)− ℓ(φ̂; s)}|ȷφφ(φ̂)|−1/2|ȷ(λλ)(φ̂ψ)|1/2, s ∈ Lψ, (10.42)

where ℓ(φ; s) = sTφ+ ℓ(φ; yo), and Lψ is a line in the sample space corresponding to fixing

λ̂ψ (and a). Expressing the result with a constraint on s avoids explicit identification of ãψ:
it is enough to know that it exists. As in Section 10.4.3 the information determinants are
computed in the φ parameterization; see (10.33).
The right-hand-side of (10.42) has the form of our original tangent exponential

model (10.37), with an adjustment factor in the ratio of determinants; note also the
similarity to the approximate conditional density (10.26) for linear exponential families.
As a result, the approximate significance function is the same as that for general
exponential families outlined in Section 10.4.3, with the significance function as in (10.24)
or (10.25), with r defined in (10.27), and q defined in (10.34). Once the tangent exponential
approximation to the original model has been established, the exponential model formulas
apply directly.
It would be natural to partition s into a component related to ψ and one related to λ,

and this is how the result is presented in Fraser and Reid (1995, Sec. 6). In later work (Reid
and Fraser, 2010; Fraser et al., 2016b) the simpler notation of (10.42) is preferred, with a
constraint on s to emphasise that the density is for a variable of the same dimension as the
parameter of interest ψ.
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10.7 Concluding Remarks

10.7.1 Summary

The tangent exponential model and associated significance function implement inference
conditional on an approximate ancillary statistic, followed by marginalization to a pivotal
quantity, r∗(ψ; y), for a scalar parameter of interest. This pivot is readily computed using
only ℓ(θ; yo) and φ(θ; yo) = ℓ;V (θ; y

o), and the full and constrained maximum likelihood

estimators θ̂ and θ̂ψ. Fraser et al. (1999) and Reid (2003) present this “inference algorithm”
as two dimension-reduction steps: from a model f(y; θ) on Rn to a model f(s | a; θ) on
Rp, by conditioning, and from this model to another on R, by marginalizing. The model on
R can be approximated by a simple standard normal distribution for the pivotal quantity
r∗(ψ; y), and in continuous models the approximation to the significance function based on
r∗(ψ; yo) has relative error O(n−3/2).

The final approximation step is somewhat separate from the development of the model on
R, and follows closely the derivation of the r∗ approximation in Barndorff-Nielsen (1986).
It can also be applied in other contexts, and in particular to approximation of a Bayesian
posterior survivor function, starting from the the Laplace approximation to the posterior
marginal density (Tierney and Kadane, 1986).
As our focus here is on the steps leading to the tangent exponential model and their

implications for inference, we have not included numerical work indicating the accuracy of
the approximations. There are many examples and exercises in Brazzale et al. (2007), in
the literature referred to there and in Brazzale and Davison (2008).

There is a close relation between the r∗ approximation and the parametric bootstrap;
the higher-order properties of the latter are investigated in DiCiccio and Young (2008),
Lee and Young (2005), and DiCiccio et al. (2015). To achieve the same order of accuracy

it is necessary to bootstrap under the constrained maximum likelihood estimate (ψ, λ̂ψ),
which increases the computational burden. Fraser and Rousseau (2008) also consider the
relationship between significance functions based on the parametric bootstrap, on r∗, and
on Bayesian versions of predictive p-values.

10.7.2 Extensions

If the parameter of interest is a vector, a significance function is not easily obtained
unless one can construct a scalar measure of departure such as the log likelihood ratio
statistic w(ψ) = 2{ℓ(θ̂) − ℓ(θ̂ψ)}, Wald statistic (ψ̂ − ψ)Tjψψ(θ̂)(ψ̂ − ψ), or score statistic,
each to first order approximately distributed as χ2

d. Davison et al. (2014) and Fraser
et al. (2016b) use the tangent exponential model as the building block for a directional
approach to inference for a d-dimensional parameter ψ which creates a univariate summary,
by considering the magnitude of ψ conditional on its direction from a null value ψ0.
The saddlepoint approximation to fTEM(s | a; θ) on this line in the sample space forms
the basis for inference. A new scalar-parameter exponential family is constructed from the
multi-parameter exponential family model or the approximating tangent exponential model.
Our discussion has presumed that the underlying data are independent, but the geometric

motivation in Section 10.3 suggests that the approach should provide improved accuracy
more generally. Belzile and Davison (2022) adapt the approach for discrete responses to
the inhomogeneous Poisson process, but this is a special case owing to its independence
properties. The main difficulty in broader settings is to compute V , and from this the
constructed parameter φ(θ). In a time series setting, a series of pivotal quantities may be
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generated from the predictive distributions F (yj | yj−1, . . . , y1; θ) for j = 2, . . . , n, using
martingale differences or a lower triangular square root of the covariance matrix for the
response (Fraser et al., 2005; Lozada-Can and Davison, 2010). It is not yet clear whether
other decompositions of the covariance matrix would lead to asymptotically equivalent
results.
There is an r∗ approximation for Bayesian inference, readily obtained from the Laplace

approximation, as mentioned above; see also Fraser et al. (1999). This provides a route to
examining the discrepancy between posterior survivor functions and significance functions.
Equating the two versions of r∗ leads to a data-dependent prior that ensures agreement of
the significance and survivor functions up to terms of O(n−1). The former was emphasised
in Fraser (2011) and Fraser et al. (2016a); the latter formed the basis for a discussion of
default priors in Fraser et al. (2010b).

10.7.3 A Brief Historical Note

Fraser viewed the dimension-reduction steps in Section 10.7.1 as essentially unique, and
consequently the pivotal quantity r∗ψ not as an arbitrary choice among several potential
pivotal quantities, but as the only route to higher-order approximation for a scalar parameter
in the presence of nuisance parameters:

This ancillary density is uniquely determined by steps that retain continuity of the model
in the derivation of the marginal distribution. It thus provides the unique null density
for assessing a value ψ = ψ0, and anyone suggesting a different null distribution would
need to justify inserting discontinuity where none was present (Fraser, 2017, Section 4).

The continuity referred to there is the presumption that changes in θ are smoothly related
to changes in y and vice-versa, as in a pure location model f(y − θ). The vectors V
determining the tangent plane to the ancillary surface are based on the local location model
defined in Fraser (1964). Suppose yi has density f(yi; θ) and cumulative distribution function
F (yi; θ), θ ∈ R. Define a transformation yi 7→ xi by setting

xi =

∫ yi

−Fθ(y; θ0)
Fy(y; θ0)

dy,

where θ0 is some fixed value, and write the density of xi as g(xi; θ). Then g{xi−(θ−θ0); θ0}
coincides with the true density at θ0, as does its derivative gx(xi; θ0). For a sample y1, . . . , yn,
this local location model has an ancillary statistic (x1−x̄, . . . , xn−x̄), and sufficient direction
(1, . . . , 1), which transforms back to the sufficient direction

V T = −
(
Fθ(y1; θ0)

Fy(y1; θ0)
, . . . ,

Fθ(yn; θ0)

Fy(yn; θ0)

)
in terms of y1, . . . , yn; see (10.16). As noted in Fraser and Reid (2001), this construction
does not give a local location model for the full sample y1, . . . , yn because the vector field
V (y) is not guaranteed to be integrable. But the expansions in that paper verify that the
approximations derived from the tangent exponential model are still valid, as the sufficient
directions V describe the same tangent plane as a second-order ancillary statistic that exists
under mild regularity conditions. Fraser and Reid (2001, Section 10.3) promised that “the
integrability of the V (y) to the required order will be examined elsewhere”, and this was
fulfilled in Fraser et al. (2010a).
Fraser viewed as intrinsically linked the construction of the tangent exponential model, the

application of the saddlepoint approximation and the construction of significance functions
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as key inferential summaries. A first, lengthy, paper written shortly after the simpler
developments in Fraser (1988, 1990, 1991) included all these pieces, and was met with some
puzzlement by editors and reviewers: one reviewer advised “it should probably be several
papers” — a reaction that might be rather unusual nowadays. This led to the asymptotic
expansions being the focus of Fraser and Reid (1993), although much of the original draft
was published in Fraser and Reid (1995). That latter paper derived the tangent exponential
approximation to general models, derived the directional vectors V from a local location
model, showed the existence of a second-order ancillary statistic with the same directional
vectors, verified that the dimension of this ancillary is fixed as n→ ∞, and derived the r∗

approximation in its general form. The construction of the directional vectors was discussed
in more detail in Fraser and Reid (2001), which is confusingly referred to in some of his
papers as Fraser and Reid (1999).
The annotations in the bibliography below attempt to provide a road map through the

most relevant of these papers. Copies of the less readily accessible ones are posted at

https://utstat.toronto.edu/reid/fraser-papers.html
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LeCam, L., 1960. Locally asymptotically normal families of distributions. University of
California Public Statistics, 3, pp. 27–98.

Lee, S. M. S. and Young, G. A., 2005. Parametric bootstrapping with nuisance parameters.
Statistics & Probability Letters, 71, pp. 143–153.

Lozada-Can, C. and Davison, A. C., 2010. Three examples of accurate likelihood inference.
American Statistician, 64, pp. 131–139.



The Tangent Exponential Model 237

Lugannani, R. and Rice, S., 1980. Saddlepoint approximation for the distribution of the
sum of independent random variables. Advances in Applied Probability, 12, pp. 475–490.

McCullagh, P., 1987. Tensor Methods in Statistics. London: Chapman & Hall.

Reid, N., 2003. Asymptotics and the theory of inference. Annals of Statistics, 31, pp. 1695–
1731.

Reid, N., 2005. Asymptotics and the theory of statistics. In Celebrating Statistics: Papers in
Honour of D.R. Cox, eds A. C. Davison, Y. Dodge and N. Wermuth, pp. 73–88. Oxford:
Oxford University Press.

Reid, N. and Fraser, D. A. S., 2010. Mean loglikelihood and higher-order approximations.
Biometrika, 97, pp. 159–170. Compares inference based on r∗ using φ(θ) = ℓ;V (θ; y

o)
to the method proposed by (Skovgaard, 1996), which can be formulated as the
same approximation using a parametrization φ̄(θ) that is constructed from likelihood
cumulants. The Appendix attempts to clarify the derivation of the tangent exponential
model.

Royall, R. M., 1997. Statistical Evidence: A Likelihood Paradigm. London: Chapman &
Hall/CRC.

Severini, T. A., 2000. Likelihood Methods in Statistics. Oxford: Clarendon Press.

Skovgaard, I. M., 1986. Successive improvement of the order of ancillarity. Biometrika, 73,
pp. 516–519.

Skovgaard, I. M., 1996. An explicit large-deviation approximation to one-parameter tests.
Bernoulli, 2, pp. 145–165.

Tierney, L. and Kadane, J. B., 1986. Accurate approximations for posterior moments and
marginal densities. Journal of the American Statistical Association, 81, pp. 82–86.

van der Vaart, A. W., 1998. Asymptotic Statistics. Cambridge: Cambridge University Press.

Xie, M. and Singh, K., 2013. Confidence distributions: The frequentist distribution estimator
of a parameter. International Statistical Review, 81, pp. 3–39.


