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LIKELIHOOD CENTERED ASYMPTOTIC MODEL
EXPONENTIAL AND LOCATION MODEL VERSIONS

For testing a scalar interest parameter in a large sample asymptotic context, methods with third order
accuracy are now available that make a reduction to the simple case having a scalar parameter and scalar
variable. For such simple models on the real line, we develop canonical versions that correspond closely
to an exponential model and to a location model; these canonical versions are obtained by standardizing
and reexpressing the variable and the parameters, the needed steps being given in algorithmic form. The
exponential and location approximations have three parameters, two corresponding to the pure model
type and one for departure from that type. We also record the connections among the common test
quantities: the signed likelihood departure, the standardized score variable, and the location-scale corrected
signed likelihood ratio. These connections are for fixed data point and would bear on the effectiveness of
the quantities for inference with the particular data; an earlier paper recorded the connections for fixed
parameter value, and would bear on distributional properties.

Keywords: Exponential family, Exponential model approximation, Likelihood centered, Likelihood stan-
dardized, Location model approximation, Significance function, Tail probability approximation, Test quan-
tities.

1. Introduction

Methods that reduce a general model with scalar interest parameter and with nuisance parameters
to a simple model on the real line with a real parameter have been developed in Fraser & Reid (1995).
For such a reduced model on the real line we have approximate normality with some cubic and quartic
terms when examined to third order accuracy O(n_%) ; the approximation can be adjusted to exponential
model form or to location model form and these special forms make available the corresponding inference
methods. As such reduced models are important for the general inference context, we develop likelihood
centered canonical versions and derive relationships among common test quantities.

An exponential type approximation is derived in Section 2 and the connections between common test
quantities are determined in Section 3. A location model approximation is derived in Section 4 and the
corresponding connections between test quantities are presented in Section 5. Section 6 contains some
general discussion and an indication of the uses for the approximate models. The results here complement
those based on density centered approximations in Abebe et al (1993) and provide relationships among
test quantities useful when comparing significance approximations.

For a real variable and real parameter consider a density function f,(y;60) that depends on a mathe-

matical parameter n , often sample size. We assume that for each 8, y in Op(n_l/ 2) about a maximum



density point and that £(6;y) = log f»(y;6) is O(n) and with either argument fixed has a unique maxi-
mum. For some background on these asymptotic assumptions see Fraser & Reid (1993), Abebe et al (1993),
DiCiccio, Field and Fraser (1990). Such a reduced model can arise by marginalization and conditioning
using sufficiency with an exponential model or using ancillarity with a transformation model; it also arises

generally (Fraser & Reid, 1993,1995) in an asymptotic context.

2. Exponential type canonical model

We consider the real variable real parameter asymptotic model just described and develop an ex-
ponential type approximation that has a centered likelihood function at a particular data point say yo,
which would typically be an observed value. The inference objective is to examine and develop approxi-
mations for the observed significance function p(#) = P(y < yo;0) by using an exponential approxima-
tion rather than the usual normal approximation. The technical approach is to expand the log-density
0;y) = aij (0 —00)i(y — yo)? /i!j! in a Taylor series expansion in parameter and variable about a data
value yo of interest and the corresponding maximum likelihood parameter value 6y = é(yo) and to record

the coefficients in a matrix,
Goo Qo1 Qo2 Qo3 Qo4
10 ai1 Q12 G13 Qa4
a0 a1 Q22 G23 QA | (1)
azo @31 G322 a3z a34
ag0 Q41 Q42 Q43 Q44

of coefficients a;; = (8°/06%)(07 /0y?)L(0;y) bona” where ajo = 0 from the maximum likelihood property.
This expansion has centered likelihood whereas the expansion in Abebe et al (1993) used a centered density
function. The different expansions have different uses:the present expansion is applicable for a given data
point and would bear on the effectiveness of various inference quantities with given data; the earlier
expansion is applicable with a given parameter value and gives information on distributional properties.
We will reexpress both 8 and y and do so in a succession of stages. For each stage we will record the
new parameter and variable ¢,z as functions of the old 6, y and record the new coeflicients A;; as
functions of the old. To avoid notational growth, we will then replace ¢, x, A by 6, y, a for the next
stage. The transformations thus need to be compounded algorithmically.

First we transform the parameter to center at the maximum likelihood value 6y and scale to obtain
unit observed information; we also transform the variable to center at the data value yo and scale to
obtain unit cross Hessian: ¢ = (—a0)"/2(8 — 6o),x = (—a20) */?a11(y — yo) . The resulting coefficient
array has

Ago = ago + %log(—azo) —logai , Aij = (—as0) "9 2afa;; , i+j>1

with A;; = O(n*izj“) for i+ j > 2, and in terms of lower case letters takes the form

Goo QGo1 Qo2 Go3 Qo4
0 1 a2 a3z —
-1 as1  a22 - - (2)
azo asr — - -
G40 — - - -



where missing elements are O(n~3).

Second, we reexpress the parameter so that the second column corresponds to that for a canonical
exponential model (A2 = A31 =0): ¢ =0+ a216?/2+ a316°/6, x =y . The resulting coefficient array
has

2
Aso = aso + 3a21 , Aso = aso + 4as1 — 6azpaz — 15a3; , Azo = a2 — a12a21 ,

and in terms of lower case letters takes the form

Goo Qo1 Qo2 Go3 Qo4
0 1 aijp Qais -
—1 0 a9 — — - (3)
ap 0 - - =
as — - - -

Third, we reexpress the variable so that the second row corresponds to that of a canonical exponential

model (A12 = A13=0): ¢ =60, =y + a12y?/2 + a13y®/6 . The resulting coefficient array has

_ _ 2
Ao = ao1 —a12 , Ao2 = ap2 — ao1a12 — a13 + 2ai, ,

2 2
Aps = aps — ag1a13 + 3a01075 — 3ap2a12 , Aos = ags — 6agsaiz + 15ag2a7, — 4ap2a13

and in lower case letters takes the form

oo Qap1r Qo2 ao3 Qo4 apo ag1 ap2 aps Qo4
0 1 0 0 — 0 1 0 0 —
-1 0 agp - - = -1 0 ¢n - - (4)
aso 0 - - - —(13/7’L1/2 0 - - -
a0 — - - = —ay/n - - - =

with the alternate expression being more convenient for determining the first row.

If the initial £(8;y) corresponds to a normed statistical model then we can calculate the elements in
the first row. If ¢ = 0, the first row is available from the log density to cumulant generating function
relations in Fraser & Reid (1993). And for ¢ # 0, we note that E(8%y? — y* + 5y®> — 2) = 0 when
y ~ N(6,1). Combining these results, we obtain

a+ (3ay —5a2 —12¢)/24n  —az/2n'/? {1+ (aq — 202 — 5¢)/2n} a3/n'/? (a4 —3a2 —6¢)/n

0 1 0 0 -

-1 0 c/n - -
—az/n'/? 0 - - -
—au/n _ _ _ _

where a = —(1/2) log(2n) .
If the original £(#;y) has the asymptotic properties but is presented only as a likelihood function

(5)

with arbitrary additive constant then the first row in the matrix (5) gives the unique density expression

corresponding to that likelihood. This follows directly from the preceding paragraph.

We call (5) the canonical exponential type asymptotic model in likelihood centered form; it describes

essential characteristics of a large sample distribution relative to the exponential pattern.

3. Test quantities and the exponential-type model



First order test quantities in an asymptotic context are usually based on the likelihood ratio, the
maximum likelihood estimate, and the score function; we derive the parametrization invariant versions of

these for testing the hypothesis # with data y =0.

For these quantities we need the score variable, the maximum likelihood estimate, and the information:

az a4—3a§—30y3

. _ C o a3 2 Qa4 3 5
3(9711)—11—(1—%21 )9—%—1/20 —59 ,G—y—2n1/2y - 6n )
. C a3 0y —C

The parameterization invariant score quantity is standardized with respect to expected information:

204 — 303 — 6¢

2= 2(8,0) = 5(6;0)i /2(0) = —(1 + )9 + i

in 6° (6)

The parameterization invariant maximum likelihood quantity uses the data-defined parameter ¢ cor-
responding to the tangent exponential model at the data point (Fraser & Reid, 1993; Abebe et al, 1993)

and the corresponding observed information:

q=q(0,0) = (¢ — )j/> = {0 — az/2n'/? — (0 — az/2n*/*)}1'/? = -9 . (7)

The signed likelihood ratio quantity at y =0 is

o 0> _ 3014—04%03
6nl/2 2n )

r = r(8,0) = sgn(d — 0)[2{¢(0,0) — (6, 0)}]}% =~

The mean and variance standardized signed likelihood ratio is standard normal to order O(n~%).

This Bartlett corrected version coincides with Barndorff-Neilsen’s (1986) r7* quantity

* _ r a3
R=r*=r—r 110g5:—6n1/2 - (1

3oy — 403
2n

2
a3 4o 3oy — o 03

)0_6111/2 T o )

We now record the connections among the quantities z,q, r, R to accuracy O(n~=2) for the

canonical exponential type asymptotic model (5); the coefficients in the connection use the characteristic



as, ag, c of the standardized asymptotic model at the data point y =0

204 — 303 —
b, = (1+£)q— oy — 303 60q3

4n 24n A
=r+ 6:13/2 - 30[47;715&g r’
o (1 e S e
= g+ (1 %)R
- 6:_13/2 N ( 3y —;1;13 + ISC)Z 3 6513/2 2 90y — 17(;75 — 18 ,
= 93 _Bau—4a3d\ a3 o, 3ag—of g
= Gnl/2 ( on 2)‘1 6n1/2q o q
= G+ (- )

These relations allow comparisons among the first order significance functions ®(z), ®(q), ®(r)
and the third order sigificance function ®(R), in terms of likelihood characteristics at a data point. By
contrast the relations in Abebe et al (1993) allow distributional comparisons of the various quantities in

terms of null distribution characteristics.

4. Location type canonical model

We again consider the real variable real parameter model in Section 1 and develop a location-model
type approximation to it at a particular data point yg , which typically would be an observed value. The
inference objective is to develop approximations for the observed significance function, p(f) = Py <
yo;0) , using a location model that then makes the observed likelihood function appear as if it were a
density function producing the significance function. This can make an observed likelihood function more
informative.

We follow the pattern in Section 2 and expand the log density £(6;y) in a Taylor’s series about
(60,10) where 8y = (yo) . The objective is to transform towards a location model f(y — ) which has

the standardized expansion

a+ (3ay — 5a3)/24n 0 -1 az/n'’?  —ay/n
0 1 —az/n'’?  ay/n -
-1 az/n'’? —a4/n - - (10)
—az/nt/? ag/n - - -

_a4/n - —_ —_ -



First we location-scale standardize the parameter to obtain unit observed information at the maximum

likelihood estimate zero.

We also transform the data value to center at yg with unit cross Hessian:

0 = (—a20)"%0 — 6y) , * = (—az) *?a11(y — yo) . The resulting coefficient array has

1 . i . .
Ago = ago + 3 log(—aso) —logayy , Aij = (—as0) D 2afay; , i+j>1

with Ai]‘ =0(n"z

. s
missing elements are O(n~2).

3 *1) for i+ j > 2, and in terms of lower case letters takes the form in (2) where the

Second, we change the parameters so that ago, a4o are negatives of as;, asz; as with the location

model: this is obtained with ¢ = 6 + by02/2 + b303/6, * = y and the choice

by = —(aso + a21)/2 , bs = (3aszeas + 3a3, — 2a3; — 2a40)/6 .

The resulting coefficient array has

Aszg = —Ag = azo + 3by , Asy = ass — aiaby , Asg = —Az = asg — 6azpbs — 1503 + 4b; .

with other coefficients unchanged. The new array with agg = —ag,a40 = —ay4 , say, is
Goo  Go1 Qo2 Qo3 (o4
0 1 a2 a3z —
-1 as a929 - - (].].)
—a3 a4 - - -
—ay - - - -

Third we reexpress the variable so that the second row acquires the form with a location model

(a12 = —a3z , a13 = a4) as in (10): this is obtained with ¢ =6, x =y + d2y?/2 + d3y®/6 and the choice

dy=as+ a2, d3 = a4+3a§+a13 + 3ai2as .

The resulting coefficient array has

Az = azs —azds , Ag1 = ao1 —do , Aoz = age — d3 + 2d3 — ap1ds ,

Aoz = ao3 — 3agada — agds + 3ag1ds , Aos = ags — 6agsds + 15agads — dagads

and takes the form
Qoo
0
-1
—as
—ay

ao1
1

as

a4

ap2
—as
a22

ap3  ao4

(12)

If the initial £(6;y) corresponds to a normed statistical model, then the entries in the first row are

available from (10) and the arguments used just preceding (5):

a+ (3as — 5a3 — 12¢)/24n
0

-1

—az/n

—ay/n

1/2

asz/n
ag/n

1/2

—{1+ (=5¢)/2n} az/n'/? (—ay —6c)/n
—az/n'/ as/n -
(—as+c)/n - - (13)



where a = —(1/2)log(2n) and as2 has been reexpressed so that ¢ measures departure from location
form.

If the original £(f;y) has the asymptotic properties but is presented only as a likelihood function
with arbitrary additive constant then the first row in the matrix (13) gives the unique density expression
corresponding to that likelihood. This follows as discussed in Section 2.

We call (13) the canonical location type asymptotic model in likelihood centered form;it describes

essential characteristics of a large sample distribution relative to a location model pattern.

5. Test quantities and the location-type model

For the likelihood centered asymptotic model (13) in location form we record the relations between
the common test quantities. These relations correspond to a fixed data point and varying parameter value
0, being tested; the coefficients use the standardized characteristics of the likelihood function at or near
the data point under consideration.

To calculate the quantities we need the score, maximum likelihood, and information
Q4
6n

1
i0) =14+ —(as—a? —c—ch?) .
6) =1+ 5 -(as - a3 )

Cc

(0% C ~
SO =00~ 5 mW—0 "+ —0)° +5-00", d=y+-4°,

As in Section 2 we calculate the expectation standardized score variable

—ag—C) g 204 + 3¢

_ «
z = 2(6;0) = 5(6,0)i"/%(9) = _0(1 - — an Tonl/2” T 12n

6 . (14)

The maximum likelihood departure is calculated in terms of the data (y = 0) dependent parameter

_ . _ 3 9 | Q4 3
¥ = e%y(aay)|y:0_0+2n1/20 +6_’I”Le
and the observed information jp =j, =1 at y =0:
3
— 00 = (5 N2 —fn_pg_ Y g2 Gty O3 gy Q43 1
q=4q(0;0)=(¢p—¢)i/"={0-0 o7zl 6n9} 055" — 5,7 - (15)

The signed square root of the likelihood ration at y =0 is

2
a3 4o 3oy — aj 03

r=r(6,0)=—-60-— o2l

(16)

The mean and variance standardized signed likelihood ratio can be calculated from the asymptotically

equivalent r* of Barndorff-Nielsen (1986)

3oy — a?
2 3 pn3
T2’ T T O

Qs (1 4 9oy — 11a§)0 Qs

— p* = — _11 C -
R=r r—r og(q) 3n1/2 7on

17)

- _3 . .
We now record the connections among z, ¢, r, R to accuracy O(n~ %) for the canonical location



type asymptotic model (13).

2
Q4 — Qg —C C
z:(1—473)q+—q3

4n 4n
B (1 _ag—aj —C)T_ a5 9o —7a3 + 18¢ 4
- 4n 3nl/2 2n
_ 9 ( 2Ty — 1303 — 180) 8 p 9y — Tad + 18CR3
~ 3nl/2 2n 3nl/2 2n
2
ay—al — C) c 5
=(14+ 2= 7%, _°
9 ( + 4an i 4nz
_ a3 5, Yaq—Ta3 4
B on
as ( 90y + 5a§) as o, a4 —Tai
= — 1-—— )R- R R
3nl/2 72n 3nl/2 + 2n
2 2
_ a4—a3—0) az o  9a4 —2303 +18¢c 4
=(1 —
" ( + 4n + 3n1/2” 2n z
_ as 5 90y — 2303 3
1+ 5 7on 2
a3 (1_9a4—11a§)R
~ 3nl/2 72n
a3 (1 27ay — 2902 — 180) az 5 9oy — 2303 + 18023
~ 3nl/2 2n 3n1/2° 2n
_ o3 (1 9a4—11a§) as 2_90[4—23(1% 3
3n1/2 72n 3n1/2Y on ¢
a3 9ay — 112
EE + (1 2n )7‘

6. Discussion

For a distribution on the real line with a real parameter we have developed likelihood centered canonical
versions of the exponential type and location type models. Now suppose we take the exponential type
model (5) and apply the procedure in Section 4 to derive the location type model, we would then obtain

an array of the form (13),

a+ (34, — 542 —120)/24n 0 —{1+ 29}  A3/n'/? (A4 —60)/n
0 1 —143/’I’L1/2 A4/’I’L -
-1 As/n'/? (—As+C)n - - (18)
—Ag/n1/2 A4/n — — —
—Ay4/n — — — —

with
As=—a3/2 , Ay= %(—4&4 +9a3) , C=c+ %(—20[4 + 3a3)
a3:—2A3 s 044:914%—3144 s C:Ag—A4+C

(19)
Thus we can convert easily between the two likelihood centered asymptotic models. Also we can cross
check the connections in Section 3 in terms of a3, a4, ¢ with those in Section 4 in terms of the location
characteristic Az, Ay, C.

We now develop an invariant representation of the model as presented in likelihood centered asymptotic

form (5). First we note that if we reexpanded in a Taylor’s series about a different value say yq , then the

new coefficients a4, o/, ¢ would be equal O(n~1/2) to those in the array (5), a simple Taylor’s series
35 Oy



property. Thus the constant in the top left position is unchanged. Second, note that dy = j~/2dy = 7'/2d
at y = 0. It follows that we can write the model as

J0)dy = o7 explU0:y) — €0y} dd (20)

at y = 0. However in this form it is invariant of the expansion point and ¢ is a constant O(n_%) and is
equal to 1 to order O(n~!). This provides a simple proof of Barndorff-Nielsen’s (1986, 1991) p* formula
when the variable has the same dimensions as the parameter. For more general use of the p* formula we
need the existence of a third order ancillary. The formula extends immediately to this generality by noting
that the constant term exp{l + d/n} remains constant when d is expanded in terms of the essential
ancillary variable.

Consider further the concluding paragraph in Sections 2 and 4 that discussed a nominal likelihood
function with asymptotic properties and concluded that there was a unique corresponding density function;
this corresponding density function is now given generally by the p* formula (20). We view this as an
extension of the usual p* result: that the p* formula gives a density model that integrates to one using
only an asymptotic likelihood type expression £(-;y). This result is used for an important technical step
in the derivation of the ancillary in Fraser & Reid (1995)

For a further generalization let

5 =4Lg(0;9)|g0 » = Ly(0;)]y0 (20)

be the score variable at an observed maximum likelihood estimate 6° and the likelihood gradient at

corresponding observed 3°; then near y° the model has the form

\/% exp{£(6;4°) — (6% y°) + s(o — °)}i; "/ ds (21)
= = e{L(0;3°) — L8 1°) + sl — $°)13/* dg (22)

with j obtained from the tilted likelihood in the exponent. This reproduces the first two columns of (5)
but is expressed in a form for arbitrary expansion point y°. This version, (21) or (22), is an exponential
model that coincides O(n=%) with the initial model (5) to first derivative at yo save a constant, and
coincides O(n~!) generally. This gives a simple verification and presentation of the tangent exponential
model (Fraser 1988, 1990; Fraser & Reid, 1995), a simple model that fits the given model to first derivative
in the neighbourhood of the data point. An extraordinary property is that it has the same O(n=%)
distribution function values at y° as does the initial model (Fraser & Reid, 1993); this underlies all the

likelihood based third order significance calculation.
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