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ABSTRACT. For a variable and parameter of the same dimen-
sion, the tangent exponential model (Fraser, 1988) approxi-
mates an asymptotic model to third order in a first derivative
neighborhood of the data point and to second order otherwise.
For the more usual case of a variable of larger dimension than
the parameter, we obtain a unique expression for the third order
ancillary distribution as projected to the observed maximum
likelihood surface, obtain the tangent directions for a second
order ancillary, and then show that third order inference needs
only the observed likelihood and the tangent directions for a
second order ancillary. These results are then combined and a
unique third order distribution is obtained for testing a com-
ponent parameter; for the case of a real parameter component
a simple expression is obtained for the third order observed
significance level.

1 Introduction

We consider the derivation and calculation of accurate approximations to
significance probabilities for scalar and vector parameters. In the very spe-
cialized case where the dimension of the variable is the same as that of
the parameter, possibly after a sufficiency or ancillaries reduction, approxi-
mations to significance probabilities having third order accuracy have been
available. For a scalar parameter and scalar variable, see Lugannani & Rice
{1980) for exponential models, DiCiccio, Field & Fraser (1990) for location
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models, and Barndorff-Nielsen (1991) and Fraser & Reid (1993; also see
a 1990 University of Toronto Technical Report) for general models. For a
vector parameter with a scalar parameter of interest, Skovgaard (1987) and
Fraser & Reid (1993) discuss approximations for exponential models in the
canonical parametrization, in which nuisance parameters are eliminated by
conditioning; DiCiccio, Field & Fraser (1990) discuss approximations for
component canonical parameters in transformation models in which nui-
sance parameters are eliminated by marginalization; and Barndorfl-Nielsen
(1991) discusses inference for component parameters in general models as-
suming a preliminary reduction to the same dimension case by ancillaries
is possible. These types of approximations are reviewed in Pierce & Peters
(1992).

In the case when sufficiency and ancillarity do not reduce the dimension
of the variable to that of the parameter some alternative reduction method
such as approximate ancillarity seems needed in order to apply available
methods. While some general constructions of approximate ancillaries have
been suggested (Barndorff-Nielsen, 1980; McCullagh, 1987, Ch. 8) the issue
is usually not addressed in the recent development of approximations to tail
areas (see, for example, the reply to the discussion in Pierce and Peters,
1992) and feasible methods are lacking. For second order inference however
the expansions in Section 2 indicate that exponential model theory without
ancillary calculations can be used; see for example DiCiccio & Martin (1993)
and Barndorff-Nielsen & Chamberlin (1994).

In this paper we consider a general construction of an approximate an-
cillary statistic and the subsequent derivation of significance probabilities
having third order accuracy for scalar or vector parameters. We use two
types of recently constructed approximating models; tangent exponential
models (Section 2) and tangent location models (Section 5). The tangent
location model provides a preliminary reduction by conditioning, and the
tangent exponential model then gives significance for scalar parameters.

A general formula for calculating third order significance for a scalar
parameter x, based on a likelihood £, (i; y) relative to a scalar variable y is

p() = Pr(x <X°) = ®(R) + #(R)(1/R - 1/Q) = ®(R,Q), (1.1)

where R and ) here are the signed likelihood ratio r and maximum likeli-
hood departure g,

r=sgn(® - 0)[2{6(X°) — LOONY? 9= (B° - Biss,  (1.2)

and f is a nominal parameter (d/dy)¢, (x; y)|ye with corresponding observed
information jgs = —(82/88%)¢.(8)| jo- Most available third order formulas
can be expressed as special cases of this general formula; for some recent
implementations of the general formula see Cheah, Fraser & Reid (1995).
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A key formula for obtaining third order approximations to significance
probabilities is the p* formula of Barndorfi-Nielsen (1980, 1983, 1988a); its
simplicity belies its remarkable importance and usefulness in asymptotic
inference. The formula intrinsically uses a likelihood function obtained
from a sample space with dimension equal to that of the parameter, say d.
For parameter # and likelihood £(#;y) the approximation is

c

(2m)d/?

£(6;0)dd = exp{€(0;y) — €(8;y)}|ee|'/*dd (1.3)

where c is a constant to O(n~%/2) and is equal to 1 to O(n~!). The formula
applies in more general contexts conditional on an ancillary, and in these
cases c is free of the ancillary to third order.

In some contexts we will encounter a modifed likelihood €, (i) for a scalar
parameter x and a derived density of the form

(2:)/“12 exp{ (6 y) — & (% 1) }6(y; X)ixy d% (1.4)

where the adjustment factor §(y; x) typically incorporates nuisance param-
eter and parameter curvature effects; it is assumed that the adjustment fac-
tor can be standardized so §(y; x) = 1 and then that §(y; x) = 1+0(n~1/2).
A direct integration by parts gives (1.1) with relative error O(n~3/2) where

Ri="7, Q =q/é,

and r, g given by (1.2): this uses j,l(izd)z = (r/q)dr. This approximation
places the adjustment & in @, and is analogous to the double saddlepoint
approximation of Skovgaard (1987); for details see Cheah, Fraser & Reid
(1995). An alternative approach incorporates the adjustment into the like-
lihood function, as in the sequential saddlepoint approximation of Fraser,
Reid & Wong (1991). Numerical work mentioned in Pierce & Peters (1992),
suggests that the sequential saddlepoint may be more accurate, especially
if there are a large member of nuisance parameters, but this is still an open
issue. Typically a numerical intergration of (1.4) is not possible as the
needed values are available only at the observed data point.

The general formula (1.1), for an exponential model with a single canon-
ical parameter, gives the Lugannani & Rice (1980) approximation, and
for a location model gives the DiCiccio, Field & Fraser (1990) approxima-
tion. For general models it has the form proposed in Fraser (1988, 1990)
and Fraser & Reid (1993) and corresponds closely to that proposed by
Barndorfl-Nielsen (1988b, 1990, 1991).

In Section 2 we provide background on the tangent exponential model and
show that it is a generalization of the p* formula of Barndorff-Nielsen (1983)
and has an inverse form with special integration properties. This is used in
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Section 3 to develop a unique distribution for a third order ancillary and in
Section 6 to obtain significance levels for testing a component parameter.

In Section 4, it is shown that for third order inference the only needed
information concerning the ancillary is the tangent directions to the ancil-
lary surface at the data point; these will be called the ancillary directions
and designated typically by an array V = (v1,...,vs) of tangent vectors.
Also we show that it suffices to obtain the ancillary directions only for a
second order ancillary.

In Seetion 5 we use location model theory to determine a first order an-
cillary at the data point, and then show that a second order ancillary has
the same tangent directions at that data point; this gives the needed aneil-
lary directions V' for a second order ancillary. These can then be used with
Sections 2-4 to show that simple likelihood and likelihood gradient informa-
tion fully determines a tangent exponential model (2.3) for the conditional
distribution given a third order ancillary. For inference concerning a com-
ponent parameter of interest 1, we derive in Section 6 a unique distribution
that is free of the nuisance parameter; this uses ancillary results of Section
3 applied to the restricted model with fixed 3. In the tangent exponential
model this distribution manifests itselfl as a lower dimension exponential
model with an adjustment factor as described in (1.4). This leads, for a
scalar component parameter, to a simple expression for third order infer-
ence. For a vector interest parameter sequential analysis-of-variance type
testing is mentioned briefly in the discussion at the end of Section 6.

2 Tangent exponential model

The tangent exponential model was developed in Fraser (1988, 1990) for a
model with variable and parameter of the same dimension d. We will see
that the tangent exponential model calculated for ancillary directions de-
rived in Section 5 produces third order inference for component parameters.
It is also used to obtain the ancillary distribution in Section 3.

Consider a continuous model f(y;6) with variable y and parameter
of dimension d: we assume that §(y) is unique and is Op(n~/2) about
the true 0, that £(6;y) = log f(y;0) is O(n) for fixed @ and for fixed y,
that £(0;y) is repeatedly differentiable with respect to # and y, and that
(n~1)£yg, is bounded from zero where the subscript # denotes differentiation
with respect to §. We use column vectors for 3 and row vectors for 6.

Asymptotic properties of the tangent model approximation under these
assumptions were recorded in Fraser & Reid (1993). We expand the log
density in a Taylor series in y and @ about the observed data point y°, and
the corresponding maximum likelihood estimate #° = 6(y°). There is then
a transformation of the variable and a transformation of the parameter for
which the expansion of the log-likelihood function in the new coordinates
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is nearly exponential and can be presented in a standardized form. For the
case d = 1, this expansion of the log likelihood £(8;y) + (1/2) log(2n) =
Ta;;(8 — 6°) (y —y°)7/(35!) has coefficients as;, 3,5 =0, ..., 4 given by the
matrix

30:4—5&23—12.: o au—20:275c a cuﬁ.'!ag-—Sc
24n 2nl/2 1 : 2 2n nlii n
0

0 1 0 -

~1 0 e - _ (2.1)
—wifs 0 = =~ -
_Eﬁi o i - —_

where omitted elements are O(n~3/2). We use c here for a particular stan-
dardized fourth derivative and the context will clarify the distinction from
¢ as a normalizing constant.

Without the first row elements, the first column gives the likelihood func-
tion at the data point and the second column gives the sample space deriva-
tive of the likelihood function at the data point. The model expressed in
(2.1) is an exponential model to order O(n~!), and is an exponential model
to order O(n~3/2) in a first derivative neighborhood of the data point,
except for the constant —12¢/24n. The tangent exponential model is the
exponential model obtained by setting ¢ = 0 in (2.1); it is uniquely deter-
mined by the first two columns of (2.1) without the first row elements.

The expansion for d > 1 (Cakmak, Fraser & Reid, 1994) uses results from
Fraser & Reid (1993) and is the obvious generalization of (2.1). The model is
exponential to O(n~1), and to O(n~3/2) differs from an exponential model
by terms of order O(n~!): these terms are of the form Cijaby'y’ Baeb/n plus
terms that are constant, pure quadratic, and pure quartic in the variable
y. Third and fourth order arrays replace a3 and a4 in (2.1).

Expansion (2.1) and its generalization to the multivariate case provides
a simple and transparent proof of the p* formula (1.3). For if the expansion
is taken about a different point in the range of the standardized variable.
it is seen that a2, a4, and c are constant to O(n‘l/z), and thus that the
norming constant obtained in the top left corner is constant to O(n3/2).
The expansion also shows that dy = j1/2d at y = y°. Thus (2.1) can be
rewritten as the p* formula.

Expansion (2.1) and its generalization to the multivariate case lead to
what can be called an inverse p* result. From (2.1) we see that the first
row is uniquely determined by the remaining rows and presents a function
of y that integrates to 1. Then from the preceding paragraph we have
that the p* expression (1.3) also uniquely determines the same first row. It
follows that if a p* formula is calculated from some asymptotic expression
in y and # that need not be a log-density then it produces a function that
integrates to one. We need this inverse p* result in Section 3. For details
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on the multivariate case see Cakmak, Fraser & Reid (1994).

The p* formula (1.3) gives the probability density, including 8 depen-
dence, at a particular data point and must be recalculated for each data
point of interest. The tangent exponential model gives the probability den-
sity in a neighborhood of the data point. It is convenient to reexpress (2.1)
or its vector analog in a coordinate invariant manner. Let

a
v =p(8)= E;y(ﬂ;yo) = a—ye(f?;y)b”,

3]
s =L(¢%y) = 37 {00 9)lzo (2:2)
be a new parameter and corresponding score variable as calculated at the
observed data point. By constructing the exponential model expressed by

G E0) = £0°) + (o — 65} ligy [ 2dg, (2.3)
where j,,, is the observed information matrix for ¢ based on the exponent
in (2.3), we obtain a model yielding the same first two columns as (2.1).
Since an exponential model is uniquely determined by its likelihood function
and sample space derivative of the likelihood function at the data point,
i.e. by the first two columns of (2.1), (Fraser, 1990), it follows that the
exponential model (2.3) reproduces the entries in (2.1) or its vector analog
to order O(n~'). When d = 1 it is shown in Fraser & Reid (1993) that the
tangent exponential model gives F(6%;8) to accuracy O(n~3/2); i.e. that
the integral up to the observed maximum likelihood point of the density in
(2.1) is independent of ¢ in (2.1). The resulting formula can be shown to
be functionally equivalent to one in Barndorff-Nielsen (1988b).

Thus for an asymptotic context with variable and parameter of the same
dimension (as obtained say from a third order ancillary as in Section 3)
we have an exponential model that to accuracy O(n~!) coincides with the
given model, to accuracy O(n~%/2) reproduces the original model in a first
derivative neighborhood of the observed data point 4°, save a constant of
order O(n"!), and to accuracy O(n~%/2) in the d = 1 case reproduces the
distribution function value at the data point; we speak of agreeing in a first
derivative neighborhood of a point to mean that the two functions have the
same value and the same first derivative value at the point. From this we
will see in Section 6 that the tangent exponential model can replace the
given model for calculating third order significance levels.

3 Third order ancillaries and a unique distribution

Third order ancillaries are not unique but the distribution of such an an-
cillary projected to the observed maximum likelihood surface is unique to
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third order. This is developed now and expression (3.3) provides a simple
method for checking ancillaries; the theory provides the background for
later sections.

Consider a continuous model f(y;8) = f(v1,...,Yn; @) with parameter 6
of dimension d, satisfying the asymptotic assumptions in Section 2. We ob-
tain an expression for a third order ancillary variable. Computing the total
derivative for the score equation le(é;y) = 0 gives the following expression
for the differential for the maximum likelihood estimate:

db = 57 4py(0;y)dy, (3.1)
where j = —£gg:(0;y) is the observed in[qrmation matrix. We then have
that volume perpendicular to the surface # = constant is given by

dyp = |loyy (0; )| |31d6; (3.2)
where |£5.,| = |€5.,(6; ;:,r)ff;,m((j;y)ll/2 is the nominal volume of the p row

vectors in the matrix Egiy(é;y); also let dy. be the complementing volume
on the surface 8 = constant.

The statistical model can then be expressd in terms of the new variables,

(; 0)dy = exp{£(8;y)} oy (B; )| ~* |7l dycdf

= g(y; 0)dy, - o )d/ge:cp{é’ (8;9) — £(6;9)}|51"/2dé, o)

(2 ?T)d/2 3 A —11211/2
——ezp{€(0;9)}oy (6; )~ 131 *dye, (34)

9(; 0)dy. =
and tentatively factored as shown. We will see that g(y; (5) gives a density
on the observed maximum likelihood surface which records the marginal
density for any third order ancillary; (3.3) then provides a simple method
for checking ancillarity. It is of related interest that (3.4) can also be viewed
as a nominal conditional distribution on the observed maximum likelihood
surface given the constant information metric |7|)/2d6 at @ = 6. These
results provide the basis for the ancillaries derived in Section 5.

We now develop properties of this factorization. First, we will be in-
terested in how the likelihood function changes on the surface 6 = 0.
From the Taylor expansion methods used for the model (2.1) and its vec-
tor version, we note as discussed in Section 2 that the components of the
standardized fourth derivative tensor array a4(6°) are constant to order
O(n~'/?). Thus the change in likelihood on the surface can be described

by the second derivative matrix j(6°) and the standardized third derivative
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tensor array a3(°). We assume that these are expressed in terms of some
choice of s scalar variables i, ..., G, and then let a;41,...,a, _gben—d—s
complementing variables, giving a full variable a(y) complementa.ry to 6:

a(y) = (a1, .., 84} 8g41,...,an-a) = (aq1); a(z))- (3.5)

Now consider g(y; @)dyc as a nominal relative density for y on the sur-
face with given @ and let A(6) be the corresponding norming constant.
Let G be some probability mteg‘ral transformation, say the coordlnate-by-
coordinate G = {Gl(al,B) Gn_d(an_gdlay,...,an_d_1; )}, and u =
{A(G)Gl, Ga,...,Gn_g} bea transformation to a new variable u from the
a’s, thus giving g(y;8)dy. = du on (0, A(d)) x (0,1)"~ 4!, The model can
then be written as

f(y;0)dy = du - ——=ezp(€ — §)|7]"/2df (3.6)

(2 )d/2

on U[{0, A(6)} x (0,1)"9~1 x {#}] where the union is over values for .

At this point we wish to prove that u(y) has ancillary properties and that
E(B y) gives a conditional likelihood, or equivalently that c(27m)~1/2exp(f —
£)|5]/2 is a conditional density for # given w. None of these are available
immediately from (3.6). However, from the assumptions that £(6;y) and its
derivatives are O(n) and the particular choice (3.5) for the complementary
variable, we do know that on a contour u(y) = constant, @ retains the
property of being the maximizing @ value. Then from the inverse p* result
it follows that the second factor in (3.3) is a density that integrates to 1
to order O(n~%/2) and that the normalizing constant ¢ is constant to the
same order. ;

For any particular 6 value we can then integrate § out of (3.6) obtaining
the marginal probability element du for u = u(y). It follows that A(f) = 1,
and that » is uniform on (0, 1) ¢. In succession we then have that u(y)
is ancillary of order O(n=3/2), that the second factor in (3.6) is the condi-
tional density of @ for given u, and that £(6;y) is a conditional likelihood to
order O(n~%/2). Various third order ancillaries are obtained with various
probability integral transformations.

4 Needed ancillary information

In this section we investigate the information that is needed for third order
inference using the conditioning associated with a third order ancillary. We
will see that only the likelihood at the data point and its gradient at the
data taken in the ancillary directions are needed. Also we will see that the
ancillary directions need to be determined only for a second order ancillary.
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For the case that the variable and parameter have the same dimension,
we know that the tangent exponential model reproduces the full model to
order O(n~!) and the local model save a constant to order O(n~%/2) and
that it provides third order significance for appropriate scalar parameters.
To calculate this tangent model we need only the observed likelihood and
the likelihood gradient at the data point. If the model is conditional within
some third order ancillary. then the conditional likelihood gradient be-
comes the full likelihood gradient taken tangent to the ancillary surface.

To describe this let V' = (vy,...,v4) be an array of d vectors tangent to a
third order ancillary at the data point. Then
L6;4°,  p=0,06;4°) (4.1)

fully determine the tangent exponential model within the conditioning of
the ancillary.

We now show that for third order accuracy it suffices to have vectors V
only for a second order ancillary. For this we use coordinates (¢, a(;)) stan-

dardized as for (2.1), and ignore a(g) as (é, a(1)) forms a sufficient statistic
to third order. Thus V here becomes an array of vectors each with just
s coordinates. For the calculations based on (4.1), the length of a vector
is unessential, as its effect appears as a scale factor that cancels out from
the tangent exponential model (2.3); in fact all that is required is a set of
generators for £(V) (Fraser, 1990). It is convenient to take an initial V to
be an orthonormal set.

Now let an initial array V' be tangent to an ancillary of order say just
O(n~!). Such an ancillary can be upgraded to an ancillary of order O(n=%/2)
by an O(n~') adjustment (Skovgaard, 1986). Let W = (w,...,wq) be a
tangent array at the data point for the upgraded ancillary. For a particular
component vector we can then write v = w + § with § parallel to the max-
imum likelihood surface, and from Skovgaard (1986) have that the length
of §is O(n~1). For notation let w = wpw, § = 06 where for example 8 is
the length of § and § is the corresponding unit vector. We then have

E;u = Z;J,’UJO + figao

where 6o = O(n~!) and wp = 1 to order O(n~1).

Consider the discrepancy in using V rather than W, as given by the
second term on the right. We have that 6 is constant parallel to the 6 =
constant surface and thus to order O(n~!) the likelihood function varies on

the 6 = constant surface only with respect to 7 and thus does so only to
order O(n~1/2), It follows that

8560 = O(n~Y2)0(n™') = O(n™%?)

We thus have that the needed likelihood gradient on an O(n~3/2) ancillary
can be obtained by using the gradient in an O(n™!) ancillary direction.
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5 Determining the ancillary directions

5.1 For a real parameter

Fraser (1964) derived a local ancillary based on an approximating location
model for a distribution with a scalar parameter. In this section we describe
the approximating location model and first order ancillary statistic. We
then show that there is a second order ancillary with the same tangent
direction at the data point. Combined with the result from Section 4 this
gives the ingredients for third order inference for the parameter. We thus
have a second order ancillary and third order inference from a particularly
simple and easily calculated first derivative ancillary. For applications the
second order ancillary itself does not need to be calculated.

Consider a continuous model f(y;8) = IIf;(y;0) having independent
scalar coordinates and scalar parameter #, together with a data value 3°
and corresponding 6(y°) = 6° which we write as 6y for simplicity. We
assume that the parameter @ is effective: for each i, the distribution func-
tion Fj(yi;@) has a nonzero derivative with respect to 8 and thus each y; is
stochastically monotone. For convenience we assume that directions for the
variables have been reversed as needed, so that the variables are stochasti-
cally increasing in 0.

For the ith coordinate with density f and distribution function F, define
a new variable by

zi= [ (= Fys(u: 00)}/ Fio(y; 00) . (5.1)

As shown in Fraser (1964), the density function for z satisfies 8 (z; 6) /00 =
—0f(z;0)/0z, at @ = 6p; i.e. the model for z is a location model to first
derivative at 8 = 0.

We will use y; again for the modified variable and denote the corre-
sponding location model by f(y — A;6y) where A = 6 — 6;. Expanding
log f(y;8) — log f(y — A; 6p) in A about A = 0 gives

2
£039) — 005y — &) = {£aa(00;3) (00 1)} -

AS
+ {€o00(00; y) + €yyy(bo; y)}? +0(AY),

f(;0) = f(y — A;00)exp{r(y)A%/2 + s(y)A%/6 + O(A?)}

=J(y—8;00){1 +r(y)A%/2 + s(y)A%/6 + 0(A(4)})
5.2

from which we see that E{r(y);6p} = 0.
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For the full model on R™, we write 8 = 8y + én~/2. Then f(y;#) can be
written

TI{/i(ws — 6n™/%; o)ezp{ 5=8%r3(34) + 73 6%:() + O(n =)}
= I{fi(y: — én" "% 60)}

{14771 ) n(@)6%/24+ 072" si(1:)8°/6 + O(n72)}.
(5.3)

The location model that is the first factor in (5.3) has an exact ancillary,
say d, so this factor can be expressed as the product of the marginal density
for d, which is free of § and the conditional density given d, which is a one-
dimensional distribution depending on §. For an arbitrary point y, let
yo = yo(y) be the point on the observed maximum likelihood surface with
the same value for the location model ancillary d(y); that is, 6(yg) = 0° = 8,
and y—yo = (z/y/n)-1 where 1 designates the 1-vector. The location model
factorization can be written as

I fi{yoi + (z — 6)n"Y/2; 6p }dy = exp{£(6 — z;%)}dzh(yo)dyo, (5.4)

where the conditional density along the orbit has the location model form
and the marginal density for the orbits on the observed maximum likelihood
surface has density h(yo) with respect to volume dyg orthogonal to £(1).

We now wish to find the corresponding marginal and conditional dis-
tributions in the full model f(y;#). The non-location factor for the full
density in (5.3) can be examined along the observed maximum likelihood
surface and along the orbits; we write

—Z'ﬂ(y, - (y) \/—(w+fz

where u(y) has mean 0 and variance O(1) at § = 0, w(y) = u(yo(y)), and
u(y) — u(yo) is expanded in terms of z along the orbits yo + £(1). For
convenience we assume w has been scaled so that it has variance 1; the log
density can then be written

£(6;y) = a(yo) + €6 — z;90) + ewd?/2n'/2 + 262 /2012 + ¢6° /6n1/?
(6.5)

and the departures from location model form appear in the terms involving
e, f and g. These departures depend on y only through w and =.

In the Appendix we show that the orbits of the location model ancillary
defined by z can be adusted by introducing a curvature term, and that
the marginal density of the new orbits is free of § to O(n™!); i.e. the
new orbits define a second order ancillary statistic. Since the new orbits
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are obtaind by adding a curvature term at the data point the tangent
direction of the second order ancillary at the data point is the same as
that of the first order location model ancillary. Thus in applications it is
sufficient to work with the ancillary for the local location model defined in
(5.1). For later use it is convenient to record the O(n~!) ancillary direction
v=1u(y) = {v1(y),...,va(y)} in terms of the original coordinates:

9F;(y; 6)/080
vi(y) = Wb- (5.6)

5.2 For a vector parameter

For a vector parameter we restrict our attention here to the case of in-
dependent coordinates, each with a single parameter 6; which in turn is
linearly dependent on a common parameter 8 = (84, ..., Ba4). We obtain
an approximating location model for 8 with a first order ancillary and then
find a second order ancillary with the same tangent directions. We assume
that the location adjustment described by (5.1) has already been made.

For the ith component y; we use (5.2) with A; = 6; — 6,0 = X;(8 — Bo)
where By = f is the overall maximum likelihood estimate, 6,0 = X;f;
and X; = 06;/383 at By. It would be sufficient to assume local linearity of
¢; = h;(B), with a bound on the second derivatives. For the full model we
use B3 = fo + 6n~1/2 and obtain

I{fi(y: — Xibn ™12, 6:0) {1 + n"16'R8/2 + n~%/2883/6} (5.7

where R =3 r;(y:)X{X; and S6° is in fact a third order array.

The location model given by the first expression in (5.2) has an exact
ancillary. For this we write yy = yo(y) where g is on the observed maximum
likelihood surface and has the same value for the location model ancillary,
and y —yo = Xzn~'/2, where X is the n x d matrix with rows X;. The
location model factorization is then

Ifi{yoi + Xi(z — 8)n V2,60 }dy = exp{£(6 — 2;y0) }dzh(yo)dyo (5.8)

where the conditional density has d dimension location form and the marginal
density h(yo) on the observed maximum likelihood surface uses volume or-
thogonal to £(X).

Now consider the full model f(y;8). The non-location factor can be
examined in terms of the observed maximum likelihood surface and the
location orbits, and we have

2 Fixn
78

NE

+ (5.9)
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where R has mean zero at § = 0, W = n~"/2R(yo), and n~V/?{R(y)—R(y0)}
has been expanded in the coordinates of z along £(X). The full log density
is then

i §W6 Y 6Fibz g8
£(B;yo) = alyo) + €(6 — z;50) + In1/2 + 2nl/2 K 6n1/2

(5.10)

and the departure from location model form appears in the last three terms,
and depends on y only through the coordinates of W and of z.

As in Section 5.1 the orbits can be adjusted by a curvature term that does
not alter the direction at the observed maximal likelihood surface. Thus
we can work with the location model ancillary implicit in (5.8). For later
use it is convenient to record the O(n~!) ancillary directions V in terms of
the original coordinates: V = DX where D is diagonal with

o _ORw0)e,
dii(y) = " BFi(y;0)/5y 0O

6 Testing an interest parameter

In this Section we assume that the parameter @ is partitioned as (A )
where 1 is the parameter of interest, of dimension dy and X is a nuisance
parameter of dimension dy = d — dy. For the full parameter 0 the ancillary
directions V' are determined in Sections 4 and 5. This gives a tangent
exponential model for a d-dimensional variable as at (2.2) and (2.3):

=Ly (0iy)lye, s=4E:(0;9)s, (6.1)

e L) = E0) + (0 = )}l V2ds,  (62)-

where we write £2() for £°(8) with 0 expressed in terms of ¢ by (6.1).

We now restrict attention to a particular value for ¥, writing 0y, =
(A, %0). As in Sections 3 and 4, the submodel of (6.2) obtained by fixing
¥ = 1o can be factored into a conditional distribution given some ancillary
directions and a marginal distribution for the ancillary, which is free of \.
The marginal distribution, which is unique when projected to the surface
9,;,0 = 9¢, , provides pivotal assessment of the parameter value 15. The
marginal distribution can be obtained from the ratio of (6.2) to the condi-
tional distribution given the ancillary directions for A taken at the observed
maximum likelihood point.

We first need to establish a link between the partition of @ a.nd a partition
of the canonical parameter ¢. We write ¢ = (1, ¢2) and ' = (s}, sp) and
assume the vectors V have been chosen so that the surface ¢y = o on the
full parameter space is tangent to the surface o = (g9 at 6 = 9% and
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increments in the same directions. It follows that the maximum likelihood

surfaces édm = é‘?f’o and éw,u = égm are the same.

We now follow the construction in Section 3 within the conditional model
(6.2) with ¢ = (i1, 20). The conditional density for the nuisance parame-
ter score at the observed maximum likelihood point is given by the analog
of the second factor in (3.3):

/

c . i ) )
Wea:p{fo(@h 20) — eo((pl%o’ ‘»"20}}|J(wm)(93=.,)| 1/20{31»

where the conditional score is just s; and the information is calculated for
1 with ¢ fixed at 1y,

Boren) (0a0)] = 12ax(63) loa (63 2.

The marginal ancillary density for s; as projected to the maximum like-
lihood surface 8y, = 65, , @2 = @3, or s; = 0 can then be obtained by
dividing the joint density (6.2) by the preceding conditional density:

I

P " N
WGIP{EO(W?¢201‘P2O) - EO(‘PO)
+ (b2 — B2)82 Fpe |~ 2 |Fioren) (00,0 2dss. (6.3)

This presents itself as an exponential model with modulating factor as in
(1.5). Note that the parameterization is special to the value 1y or to .

In the case dy = 1 the left tail probability for testing the value v (for
convenience we now write 9 for 4g) is given by (1.1) using the signed profile
likelihood ratio corresponding to the data point s = 0 given by

R = sgn(@5 — p2)[2{€(¢°) — €&y, w2)}]'?
= sgn(y° — 9)[2{€°(6°) — L(G)}]"/? (6.4)
together with the standardized nuisance-adjusted departure Q = M le/ 2 yi .1'11 &l
Here M is the maximum likelihood departure for the coordinate ¢, and

Jo and Jy are full and nuisance parameter information determinants. In
terms of the original ¢ coordinates

M = @ — o3 = sgn( — $)|{¢° — 0(03)}syl/ sy,

where sy, = (p‘p(ég,) gives in  coordinates the vector perpendicular to the
1 curve at ég

dip = (dX, dp)per (05),  dv = dip p¥(85),
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and {ip (05)} " = {0*(65), 0¥ (65)} is the inverse of the 8 to ¢ Jacobian.
Similarly

Jz2 = |Fpe| = 12(8°)ler (6°)172,
J1 = Peren) (0,)] = |2an(83) lex (65)1 72, (6.5)

recalibrated on the ¢ scale. We see that the maximum likelihood depar-
ture is standardized by a quotient involving full and nuisance information
in appropriate coordinates and can be viewed as applying an appropri-
ately calculated marginal standard deviation for the parameter replacing
1. These calculations use values within a first derivative neighborhood of
the observed data, where the approximate model provides O(n=3/2) ac-
curacy for a tail probability. Alternative formulas using adjusted profile
likelihoods are discussed in Cheah, Fraser & Reid (1995).

In the effective context of the same dimension for variable and parameter,
Barndorfl-Nielsen (1991) obtained a third order formula for a scalar compo-
nent parameter. In the submodel obtained by fixing 1, Barndorff-Nielsen
(1991) and (1986) shows that the likelihood ratio statistic for testing the
submodel, designated R in (6.4), can be adjusted to be ancillary to order
O(n~3/?) with respect to the nuisance parameter of the submodel. Thus
the adjusted version BarndorfI-Nielsen’s r*, provides a pivotal assessment
for 1, as does the ancillary derived above. Qur Q is similar to the ad-
justment from R to r*: the exact form of the adjustment is given in (3.3)
in Barndorfl-Nielsen (1991). If this assessment of v is combined with the
ancillary from Section 5, we obtain an altemative to the preceding tail
probability.

If the parameter of interest is a vector, one approach is to apply the
methods of Section 6 to successive components of the parameter vector.
The general approach is described in Fraser & McKay (1975, 1976), Fraser
(1987), and Fraser & McDunnough (1988). Barndorfi-Nielsen (1986) de-
scribes successive testing of parameter components using r*.

For example writing the parameter of interest as 8 = (6, ..., 84) the ith
hypothesis H;: 6; = #;0 would have parameter by = (bh,..., 65, O(i+1)05 -+
@an). The value for the ith hypothesis is given by p; = ®(R;, M;, Jf”/]ff‘;)
where

R; = sgny(0y — 00, )) [2{€°(8y) — € (6%_1))}]"/?
M; = ‘Pl(é?i)) = ‘Pl(é(()if}))
Ji = |.73(s)9(i) (é?i))H‘PB(s)(é?i))

where sgn; gives the sign of the ith coordinate and the ¢ coordinates are
successively defined. Details on constructing the successive ancillary di-
rections are outlined in an unpublished technical report available from the
authors.

|—2
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7 Example: Exponential regression

We write the model for the ith observation as f;(y;) = exp{—0;y; +log(6;)}
with E(y;) = 8;' = ezp{a + B(zi — T)} = exp{Xi(a, B)’}. This is an
example of a generalized linear model with link function

b: = 9{Xi(a, B)'} = exp{—(1,z: — T)(=, B)'}, (7.1)

which is nonlinear in the canonical parameter 6;.

First we follow the methods in Section 5 and determine how the param-
eters a, 3 move the data point in a translation manner. Writing dy; =
d(y;; 0;)d0; we obtain from Section 5.1 that d(y;;60;) = —v:/6;. Then intro-
ducing the dependence of 6; on «, 8 we obtain

dy; = d(y;; 6;)g;{ Xi(a, B)H{~-1 " da — (z; — T)dB}
which when evaluated at (4°, 3°) gives the ancillary vectors
v = (y(l)v .- -,yﬂ), vy = {y?(:cl —Z), ..., 82 (zn — F)}.
Next we record the tangent exponential model (Section 2) that approxi-

mates the conditional model given the ancillary with tangent vectors vy, vy
at the observed data:

9(s1,52) = ezp{€(a, B) + @181 + P252} (), (a9 2ds1d52  (7.2)

where

P, f) =na-Y Weap(-a—fai -2}  (13)

d
1= gorblen Byl = ) Jeap{-a - flai - D)}y

P2 = S tla, By = Y eon{—a— Bla: ~ Byl — ).
(7.4)

Then to obtain significance for the parameter 3 we follow Section 6. The
signed likelihood ratio for g3 is

R = sgn(B° ~ B)2{€ (&, B) — (a5, 8)}]"/* (7.5)
and by itself provides significance ®(8) to order O(n=1/2). To calculate the

particular canonical parameter component of the exponential model that
coincides with 3 at (&g, ) we can calculate the gradient (£3,£3) of the
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observed likelihood at (&g, 3) expressed in terms of the canonical parame-
ters (7.4) and evaluated at (&g, 3); this is an alternative to the calculation
preceding (6.5):

_ (0p1/0a Bp1/Ba\T (€
2= (amias opmjos) (&) leser s
The standardized maximum likelihood departure @ = MJ2/?/J1/? is then
obtained from

M = sgn(B° — B){(1(&, B) — v1(ég, B), w2(&, B)
= m(aﬁ,ﬁ)}lj—zl (7.7)

together with (6.5). The observed significance is given by (1.1) using R and
Q as just defined.

This model is a location model on the log scale, so an exact calculation
of significance for F is available. The location model pivotal ¢{; = logy; —
a — B(x; — Z) has the extreme value distribution. The joint distribution of

(&, ﬁ) conditional on the ancillary of the location model is obtained from
the likelihood function

f(&,B;0,8) = c exp{f(a —a+48°, 8- B - £°)}

and the significance for § with o unknown is
o0 [s.a]
P(,@ <B%p) = f f c exp{f(a,t)}dadL.
B —oa

This model was used to fit data from Example U in Cox & Snell (1981) in
Fraser, Monette, Ng, and Wong (1995). The data consists of 17 observations
on lifetime (in weeks) of leukemia patients, and the concomitant variable is
the log of the initial white blood cell count. The 95% confidence intervals
for 3 are

first order -1.9153 -0.2835
third order -1.9144 -0.2729
exact -1.9145 -0.2726.

This model is an example of a generalized linear model with non-canonical
link. Such models are considered in general in Fraser, Monette, Ng, and
Wong (1995). When the link function of a generalized linear model is canon-
ical, then the usual third order methods for exponential families can be
applied: the approach described in this paper then reduces to Skovgaard’s
(1987) double saddlepoint approximation. Numerical results described in
Pierce & Peters (1992) suggest that the sequential saddlepoint approxi-
mation of Fraser, Reid & Wong (1991) can be more accurate. Both of
these approximations are asymptotically equivalent to Barndorff-Nielsen’s
r* approximation (1986) in exponential models.
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Appendix

The location model included in (5.5) has marginal density h(yg) = €*¥°) on
the observed maximum likelihood surface and conditional location density
£(6—z;yo) along the orbit yo+L£(1). The adjustments to this location model
are ews?/2n!/2, which depends on a scalar variable w on the maximum
likelihood surface, fz6%/2n!/2, which depends on z along the location orbit,
and ¢&°/6n!/2, which is constant.

The first order limiting distribution of w is normal with mean 0 and
variance 1. We can obtain an ancillary A(yy) following the methods in
Section 5.1 or using the conditioning as with a(2) in Section 3 with respect
to the ewé? modulation on the maximum likelihood surface, such that w
has the same limiting normal distribution given that ancillary. Now the &
dependence can be examined in the joint density for z and w, conditional
on this ancillary A. We now modify w so it becomes ancillary with respect
to 6.

Define % = w + a22/2n!/2. Substituting this into the location model for
w and z gives the joint density for 4 and z:

\/Iz_ezp{—(ﬁ) ~a2?/2nY/2)2 /2 exp £(6 - 2,y0)
Yil
1
:\/?ezp{—TIJz/Q}(l + waz?/2nY?)exp 46 — 2z, yp).
™

To first order z is normal with mean 6 and variance v, say. Thus the
derived marginal density for @ is N(0,1) {1 + @wa(62 + v)/(2r'/2)}. The
bending of the location orbits by going from w to @ introduces a factor
asymptotically equivalent to exp(awé?/2n'/2) which by choice of a can
eliminate the existing modulating factor ezp(ew$?/2n!/2). Thus by pro-
Jecting along the modified orbits @ = constant we obtain a new marginal
distribution on the maximum likelihood surface and this distribution is
free of § to order O(n~1!). This adjustment to the orbits does not alter the
tangent directions at the maximum likelihood surface.

For the vector parameter case we have a factor exp(6'Wé§/2n'/2) which
modulates the density of the location model ancillary. Consider any com-
ponent, say w;; in the matrix W. As in the preceding case we can find
a corresponding ancillary and, conditional on this ancillary, examine the
d + 1-dimensional distribution for z and w;;. A curvature term of the form
ai;jziz;/2n'/? can bend the location orbit in the direction prescribed by the
ancillary; and an appropriate choice of a;; then eliminates the modulation
above. Each of the components that modulates the location ancillary den-
sity can be eliminated this way without modifying the location ancillary
directions at the maximum likelihood surface.
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