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1. SUMMARY AND INTRODUCTION

Sufficiency and conditionality are long standing basic methods central to statistical
inference; the first is effective primarily with exponential models and the second with
location and transformation models. Recent asymptotics involving the likelihood function
has led to highly accurate test procedures even for small sample sizes and provides well
defined reduction methods for general models. Interestingly the contradictory methods
of sufficiency and conditionality are seen in fact to both be in harmony with the recent
general methods. We survey this evolution in statistical inference.

Sufficiency, minimum variance unbiased, and uniformly most powerful have a promi-
nent place in theoretical statistics; likelihood methods and the maximum likelihood esti-
mates occupy a related prominent place in dealing with new applications. The present
survey is to highlight recent asymptotic theory that places the likelihood methods in a
very important and central place for both applications and theory.

In Section 2 we give a brief overview of the roles of sufficiency and conditionality in
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statistical inference. Section 3 discusses the observed likelihood function and the standard
first order measures of departure. The determination of the canonical representation of
exponential models is discussed in Section 4; this is a basic ingredient in recent approx-
imation methods. Third order density approximation results are outlined in Section 5,
and third order distribution function approximations in Section 6. These form the basis
for dimension reduction (Section 7) and lead to third order p values for component scalar

parameters. Section 8 contains some brief discussion.
2. SUFFICIENCY AND CONDITIONALITY

Consider a statistical problem where the basic variable y has dimension n, the overall
parameter 6 has dimension p, and the parameter of interest ¢ has dimension r; then either
directly or implicitly we have § = (A,1) where X is a nuisance parameter indexing the
possible distributions for each value of .

Sufficiency was introduced by Fisher (1920, 1922) as a reduction method to simplify
statistical models. In many cases the reduction is from the model for the original variable
to a model for the sufficient statistic of dimension p. This happens typically for exponential

models where the range for the canonical parameters has full dimensions p:

F(y;0) = exp{¢'(0)s(y) — k(0)}h(y) - (2.1)

As an example consider y1, y2 from fe=% on (0,00). The statistic s = y; + y3 is sufficient
and the distribution of, say, y1|s is uniform (0, s) and accordingly is free of 6.

We note that in going for y to s(y) we have reduced the dimension of the variable
from n to p and replaced the original model by the marginal model for the new variable.
If we refer to the f-free distribution of y|s as error, then we have eliminated the error by
marginalization.

A less well known aspect of the usual sufficiency reduction concerns inference for an

interest parameter 1. For the case that ¢ is a canonical parameter in (2.1), say
f(y;0) = exp{N's1 +9'ss — K(0)}R(y) , (2.2)
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we have that the distribution of ss|s1 is free of the nuisance A and thus depends only on
t; this conditional model for s;|s; is widely recognized as being the appropriate basis for
inference concerning v free of the nuisance parameter A\. As an example consider y; from
61e7 %Y1 and y, from fye7%2Y2 both on (0,00); with ¢ = 5 — 6, as interest parameter,
we have that the distributions of y3 — y1|y2 + y1 depends only on v and thus is free of say
A=0;+0,.

Conditionality was introduced by Fisher (1934) as a reduction method for location
models where there is no loss of information as measured by Fisher information. The
method has been generalized to transformation models and is well illustrated by the re-

gression model

fly—XB) (2.3)

say with known error scaling; the reduction is from the full model on R™ to the conditional
model for say b(y) = (X'X)~1 X'y given the residuals a(y) = y — Xb(y), and thus is from
dimension n to dimension p.

We note that the original model is replaced by a conditional model for the new variable.
Also if we refer to the 3 free distribution for the residuals as error, then we have eliminated
the error by conditioning.

Now consider the follow-up aspect of inference for the interest parameter 1. For the

case that 9 is canonical, say with

b= () =)

then the marginal distribution (within the preceding conditional distribution) of by — ¢ is
free of the nuisance parameter A and is recommended for inference concerning 7). Note
that in going from b to by we have reduced the dimension from p to r and replaced the
initial model by the marginal model for by. In some sense we have eliminated the nuisance

parameter effect by marginalization.



As an overall summary of the sufficiency and conditionality methods, let e be a variable
associated with error, u be a variable associated with the nuisance parameter, and v be

one for the interest parameter. We then have the pattern:

Reduction Original Eliminate error Eliminate nuisance
method variable use use
Sufficiency (e,u,v) (u,v) vlu
Conditionality (e, u,v) (u,v)|e vle

For sufficiency we marginalize and then condition; for conditionality we condition and then
marginalize. Some statisticians feel that it is inappropriate to have different procedures for
different models. By contrast we feel that different models are presenting information in
different ways and that one can then reasonably expect to see different procedures to elicit
the information. We will see that recent asymptotics presents a unifying thread to inference
procedures allowing them to be examined from a common viewpoint. Interestingly, the
unifying pattern corresponds superficially more to the second procedure, the conditionality

procedure.
3. LIKELTHOOD AND FIRST ORDER ORDER ASYMPTOTICS

The likelihood function records the probability at a data point y as a function of the
parameter that indexes possible distributions. For a model f(y;#) the likelihood function

in logarithmic form is
£(0;y) = a+In f(y; 0) (3.1)

where a is an arbitrary constant with the effect that only relative likelihood from one 6
value to another value is recorded. For some discussion, see for example Fraser (1976,
Ch.8).

Two key characteristic of a likelihood function are the maximum likelihood value 0 =
arg sup £(0; y) which gives the maximum value to likelihood and the observed information
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which records the negative curvature or Hessian matrix at the maximum likelihood value.

Now consider a statistical model f(y;6) with n dimensional variable y and p dimen-
sional parameter 6, and suppose that the model has asymptotic properties as n — oo
and that the per coordinate information matrix i(f)/n is bounded below by a positive
definite matrix, where i(0) = V{£y(0;y); 0} is the variance matrix of the score function
£o(0;y) = (0/00)L(0;y).

Familiar first order asymptotics uses the Central Limit Theorem to show that £g(6;y)
is asymptotically normal (0;i(f)). Taylor Series expansion of £4(6;y) about 0 then shows
that the normal limiting distribution of the score function transfers linearly to a normal
limiting distribution for 6 with mean 6 and variance i(6); for this, the linear adjustment
is given by the per observation observed information j/n, which converges by the Law of
Large Numbers to the per observation information i(f)/n. A further analysis then in which
likelihood £(6; y) is expanded about 0 to quadratic terms shows that likelihood expressed
in standardized coordinates has quadratic limiting form in an O(n~'/2) neighbourhood of

A

f. As a consequence we have that the following quantities

2% =Ly (0;9)7 Lo (0;y) (3.3)
¢ =(0-19)506-0) (3-4)
r? = 2{4(0;y) — £(0;y)} (3.5)

are each asymptotically chi-square with p degrees of freedom. The Central Limit Theorem
produces the chi-square distribution for the first and the successive approximations lead to
the limiting distributions for the second and third. In applications however the accuracy
of the approximation is usually best for the last and degrades through the second to first.

With data y and a parameter value 6 of interest we refer to the quantities as measures
of departure of data y from what is expected under §. We find it of particular interest

2

that the observed values for r2, ¢2, 22 can all be calculated from the likelihood function

£°(0) = £(0;y°) at the data point of interest. Also we note that only r2 is parameterization
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invariant although 22 could be made invariant by replacing j by the expected information
i(0) at the parameter value being tested.
If 6 is a scalar parameter it is usually advantagious to work with the square roots of

(3.3), (3.4), (3.5) and attach an appropriate sign:

2 =Lo(0;y))7 "/ (3.6)
¢=(0-0)5" (3.7)
r= sgn(é —0)- [2{5(@; y) — £(6; y)}]1/2 (3.8)

These quantities are asymptotically standard normal. The comments following (3.5) apply
perhaps more strongly to the present quantities.

Now consider a component interest parameter ¢ with corresponding nuisance param-
eter \; for convenience we take § = (), 4’)’. For testing 1) we have the following first order

likelihood based quantities

2 = Ly (O; )77y (B3 ) (3.9)
@ = —v)' (") W - ) (3.10)
ri = 2{e(0;y) — L0y;v)} (3.11)
where
AN A 5 a1
96 _ (J J —_ (I D 3.12
J (j"“ JNW) (5¢A 5¢¢> 312

is the inverse of the observed information matrix; these quantities have asymptotically the
chi-square distribution with r degrees of freedom. Again we note that the quantities can all
be calculated from the observed likelihood but only 7‘3) has appropriate parameterization
invariance. If v is scalar it is appropriate to use square roots of the preceding and attach
an appropriate sign:
2y = Ly (0;9) (3¥)? (3.13)
2 p—1/2 _ () 111/
g = (Y —¥)(3*Y) :(¢—¢)Ail/2,
I

ry = sgn(P — ) - [2{6(0;y) — L(0y; y)}]

6
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A slightly modified version of (3.14) arises in certain contexts:

‘1/2 |1/2 ‘1/2

e
(0172

7 ¥ |7
- )

> : . (3.16)
AR NCIRE:

0= —9)

The preceding measures of departure (3.13) — (3.16) are asymptotically standard normal

to first order.
4. CANONICAL EXPONENTIAL MODELS FROM LIKELIHOOD

Consider an exponential model f(y; ) with p dimensional continuous variable y and p
dimensional parameter and suppose we do not have available the actual canonical variables

and parameters. Thus f(y;6) is known to have the form

f(y;0) = exp{¢'(0)s(y) — K(0)}h(y) (4.1)

but the various entries on the right side are not explicitly available. We consider how to
obtain the representation on the right side, using minimal information such as likelihood
at a data point and sample space gradient of the likelihood function at that point.

For a data point y° let

A

©(0) = £y(0;9°) — £4(0°9°) (4.2)

be a new parameterization based on likelihood characteristics at y°; for this we let £.,(0;y) =
(0/0y)L(6;y) and say take £(0;y) = In f(y;0) ignoring the usual additive constant which

in any case disappears from the difference (4.2). Also let

s(y) = £,(0% ) (4.3)

be a score type reexpression of the initial variable y; for this we have 94/0¢ = (8£/06)J~1(6°)

where J(6) = (0p/00") is the Jacobian between the two parameterizations. We then have

Fy;0)dy = exp {¢'s + [1{0(); y°} — £(0°; y°)] } H (s)ds (4.4)
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where H(s) is the density corresponding to the cumulant generating function

c(p) = £(0%°) — £{0(0); y°}. (4.5)

Note that as input to the expression (4.4) we have used only the observed likelihood
£(6;y°) at a data point y° (with additive constant) and the observed likelihood gradient
£.,(0;y°) at that point. All of the ingredients to (4.4) are explicit with the exception of the
Laplace inversion H (s) from the cumulant generating function (4.5). In summary we obtain
the canonical representation of the exponential model (4.4) using only the likelihood and
its gradient at a single data point y°; the canonical variable and canonical parameter are
given explicitly in (4.2), (4.3) and the cumulant generating function is essentially negative

likelihood reexpressed in terms of the new parameterization.
5. DENSITY APPROXIMATIONS

Edgeworth expansions have a prominent place in the development of higher order
asymptotics. Consider a p-dimensional variable y with cumulant generating function c(t),
the logarithm of the moment generating function. The Edgeworth expansion is an asymp-
totic series that uses the cumulant generating function to provide an approximation to the
density f(y), where typically y is a sum or average of the values from some initial sample.

For the scalar case, suppose that y has mean p and standard deviation o. The

approximation then using the standardized variable x = (y — u)/o is

pla) |1+ (aHs(@)} g + (3uHala) + B Ho(@) 75 + 0] (5.)

to the third order where
Hyo(z) =2® — 1, Hs(x) = 2> — 3z, Hy(z) = 2* — 627 + 3
(5.2)
Hy(z) = 2° — 102 + 152 , Hg(z) = 25 — 152 + 4522 — 15
are Hermite polynomial and 3, 4 are the third and fourth order cumulants of the stan-

dardized variable x. The Hermite polynomials are orthogonal polynomials for the standard

normal density function ¢(z).



A direct expansion in terms of the orthogonal polynomials together with ¢(z) is
called a Gram Charlier Type A expansion. The Edgeworth expansion regroups the Gram
Charlier terms into those of order O(1), O(n~/2), O(n™1), ... and typically provides better
approximations when terminated at a given order. For background see Feller (1971, Ch.15)
and Barndorff-Nielsen & Cox (1989, Ch.4). For a survey of the multivariate Edgeworth
expansion see McCullagh (1987, Ch.5).

Saddlepoint methods were introduced to statistics by Daniels (1954) and Barndorff-
Nielsen & Cox (1979). For a density function f(y) with cumulant generating function c(t)
these methods are more easily described in a statistical context in terms of the correspond-

ing exponential model
fy;0) = exp{0'y — c(0)}f(y) - (5.3)

The saddlepoint method reexpressed then in terms of statistical terminology uses likelihood

function information to provide the following approximations to the density functions for

y and 0
- S exp{€(0;y) — £(0;y) 317 *dy | (5.0
(2m)p/
c o Al ~
(@myprz PG y) = £0; y)}il*/?df . (5.5)

This uses the likelihood function £(0;y) = a +1n f(y; 0) at the data point of interest where
a is an arbitrary additive constant; for some discussion, see Fraser (1976, Ch.8). The factor
¢ =1 to order O(n~') and is constant to order O(n~3/2); the formula has relative error of
order O(n=3/2).

Now consider a general statistical model f(y; ) with continuous p dimension variable
y and p dimensional parameter. The expression (4.4) with (4.2) and (4.3) produces the
exponential model that coincides with the given model to first derivative at y°; it can be
called the tangent exponential model at y = y°.

Now in addition we assume that the general model f(y;#) has asymptotic properties

as some parameter n — co. This can arise in a Central Limit Theorem context where vy is
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a sum or average of independent and identically distributed variables. It can also arise in
a conditional context where independent variables are conditioned to bring the dimension
from n — p; see, for example, DiCiccio, Field & Fraser (1990). Results in Fraser & Reid

(1993) show that general model f(y;6) can be approximated by the exponential model

Fy;0)dy = exp{'s + [£{0();y°} — £(0°y°)| }H (s)ds (5.6)

as described in Section 4. In turn this model can be reexpressed to third order accuracy

as
c . . N
W eXp{K(@(gp);y ) 200%9°) + ¢'s}j| 1/2 4g
@ — (5.7)
C ° ro o B )
W eXp{K(Q( )iy ) (6% y )+9013}|J|1/2d ;

the information is calculated from the tilted likelihood in the exponent. We refer to this
as the tangent exponential model at the data point y°.

Now consider the accuracy of the approximation of the original statistical model f(y; 6)
by the tangent model (5.7). Except for a constant ¢/ = 1 + d/n the tangent model (5.7)
agrees with the original model to order O(n=3/2) at y° and to first derivative at y°. Also
to order O(n~1) the tangent model agrees with the original model in a compact region of
the standardized variable and parameter. We will see that this closeness of approximation
is enough to produce third order significance values for scalar component parameters. For
details, see Fraser & Reid (1989, 1993, 1994), Abebe, Cakmak, Cheah, Fraser, Kuhn & Reid
(1994), Cakmak, Fraser, McDunnough, Reid & Yuan (1994), Cakmak & Fraser (1995).
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6. DISTRIBUTION FUNCTION APPROXIMATIONS

For statistical applications we are commonly interested in tail probabilities and thus
in distribution functions rather than density functions. The distribution function approx-

imation corresponding to the Edgeworth density approximation (5.1) is easily derived:

8(2) = 9(0) [15Ha(0) g + {(31aHs(@) + BHs ()b + 0] (61)

In practice this formula is often unreliable for larger values of |z|, and can give values
outside the [0, 1] range for probabilities.

The saddlepoint approximation (5.5) to an exponential model (4.1) has a correspond-
ing distribution function approximation (Lugannani & Rice, 1980)

a(r) +o(r){ ) (62)
r o q

where r and ¢ are the signed likelihood ratio (3.8) and standardized maximum likelihood
departure (3.7) calculated in terms of the canonical variable ¢ as determined (Fraser,
1990) by (4.2); the approximation has relative error of order O(n~3/2). In practice this
approximation is found to be much more accurate than the Edgeworth (6.1); in some
sense it uses the full likelihood function at the data point rather than in effect just several
derivatives of the likelihood function at the parameter value of interest.

An asymptotically equivalent version of (6.2) has the form

®(r —rllog g) ; (6.3)

the argument 7 — r~1log(r/q) is called r* by Barndorff-Nielsen (1991) and is standard
normal to third order. From personal experience the formula (6.2) seems often to produce
better approximations but (6.3) has the advantage that it does not produce p-values outside
the [0, 1] range.

Now consider the general asymptotic model with a scalar variable y and a scalar

parameter 6. Fraser & Reid (1989, 1993, 1994) show that the probability left of the data
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point,
1 1 } (6.4)

for the tangent exponential model (5.7) coincides to third order with the probability left
of the data point for the general model. If é(y) is monotone decreasing we would use
P(y > y°;0) in expression (6.4).

The preceding result can be obtained by expanding the log-density about y° and 6°
and showing that the probability left of the data point y° is independent of a constant in
the expanded model that measures the amount the model differs from being exponential.
In the preceding expression r is the signed likelihood ratio (3.8) and q is the standardized

maximum likelihood departure (3.7), but calculated using the reparameterization ¢,

~

q= (- So)jcpso’ (6.5)

where ¢ is the nominal reparameterization (4.2).
In some contexts we will obtain an expression as in (5.7) but with an additional
adjustment factor A(6;0) which is equal to 1 to order O(n~/2). In this case we then

obtain the third order significance function p(#) by adjusting ¢ in (6.5)

Q=q/A. (6.6)

and replacing ¢ in (6.4) by . The additional factor typically arises from averaging over
a nuisance parameter distribution but its effect is easily incorporated by the adjustment

(6.6). See Cheah, Fraser, and Reid (1994).

Now consider the general asymptotic model with p dimensional variable y and p di-
mensional parameter 6 and suppose we are interested in some scalar component parameter
®. We find it convenient to use the abbreviation £°(0) = £(6;y°).

At a data point y° we have the approximating tangent exponential model (5.7). For

the particular value v of interest, we consider the contour éw = 9171 In the space of the
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variable s this is a straight line through s°(= 0) and parallel to the line in ¢ space through
(ﬁfp perpendicular to the contour with 1) = constant. It can be shown (Barndorff-Nielsen,
1980, 1983) that there is a one-dimensional ancillary free of the nuisance parameter. Also
it can be shown (Fraser & Reid, 1994) that, whatever the ancillary is, its distribution

recorded on the line t% = é;;) is unique to third order with density

|J~(99)\1/2_ |J~(>\>\)|1/2 . d
T M2 1Gon (By)1/2

W exp{£°(03) — £°(6°) + 50} (6.7)

where § is length along the line corresponding to éw = éfp and ¢ is the scalar parameter
obtained by measuring ¢ in the increasing v direction for that line. The parentheses on
the information subscripts are to indicate that they are to be recalibrate in the nominal ¢
parameterization. The model (6.7) has the form of an exponential model with adjustment
factor A as described preceding (6.6). It follows that the significance function p(%)) is given
to third order by formulas (6.2) or (6.3) using the signed likelihood ratio r = ry in (3.15)
and the maximum likelihood departure g given by

Q= [@(éo) - @(é;;)} M
Jow) (0y) /2

as in (3.16) but calibrated in the ¢ scaling. For details, see Fraser & Reid (1994). An

(6.8)

alternative third order approximation is developed by Barndorff-Nielsen (1991).
7. DIMENSION REDUCTION

Consider a statistical model f(y;6) with n dimensional variable y and p dimensional
parameter 6, and suppose that the model has asymptotic properties as n — oo and that
the per coordinate information matrix i(6)/n is bounded below by a positive definite
matrix, where () = V{£y(0;y); 0} is the variance matrix of the score function ¢4(6;y) =
(0/00)L(0;y).

Barndorff-Nielsen’s (1980, 1983) extensive analysis of likelihood assumed the presence
of a third order ancillary of dimension n — p for the parameter ; no accessible procedure

was available for the construction of such ancillary in a general context.
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For a p dimensional statistical model we noted in the preceding section that for third
order inference we need only the observed likelihood function and the gradient of the
likelihood function calculated at the data point. What are the implication from this in the
context of a third order ancillary?

Directly from the property of ancillary we have the factorization

f(y;0) = g(a)h(s|a; 0)J (a, s) (7.1)

in obvious notation, and thus have that the overall likelihood is equal to the conditional

likelihood,

£0;y) = £(0; s|a) (7.2)

We then see that the gradient of likelihood in the conditional distribution is given by the
gradient of the full likelihood £(6; y) tangent to the ancillary surface. Let V = (v1,...,vp)
be p vectors tangent to the ancillary surface at the data point and let W = (wq, ..., wp)

be the corresponding vectors in terms of the coordinates s|a at the data point; then

, d d
Lv(0;y°) = {d—vlﬁ(G;y),---, %13(9;?;)} ,
p

(7.3)
= { d L(0s,a),..., i€(0|8, a)}yo = Lw(0]s°,a°)

d—'wl dw,,

Thus for third order inference from the conditional distribution we need the observed
likelihood £°(0) and the observed likelihood gradient £3,(¢) tangent to the ancillary surface.

A function a(y) is said to be a first derivative ancillary at 0y if (d/df)1Ing(a;0)|g, =0
where g(a;0) is the density for a(y). Also a first derivative n — p dimensional ancillary
at 0° is a first order ancillary at the data point. A first derivative ancillary at 6° can be
adjusted to become second or third order ancillary without changing its tangent directions
at the data point. Skovgard (1986) discusses the successive improvement of the order of
ancillarity. Fraser & Reid (1994) shows how a first derivative ancillary can have its order

increased without altering the tangent directions at the data point. Thus it suffices to
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obtain the likelihood gradient £,y/(€) tangent to a first derivative ancillary at the data
point.

Fraser (1964) derived a first derivative ancillary with a scalar parameter using location
model theory. Consider a continuous model f(y;0) = I1f;(y;; ). For the parameter value
0y we transform each coordinate y; to a new variable x;; for this let f and F' be the density

and distribution functions for y; stochastically increasing in 6, and define

Ti = /y { — Fy(y;00)/ Fo(y; 90)}dy ; (7.4)

then the density function say g for x; satisfies dg(z;0)/00 = —0g(x;0)/0z at 0 = 6y and
thus is a location model to first derivative at 0.

We now write the full model in terms of the coordinates x; and have
9(z;0) = lgi(z:0) . (7.5)
The location model determined at the parameter value 6 is
9" (x;0) = Hgi{z; — (0 — 6o); 6o} (7.6)

and it agrees to first derivative with the original model (7.5). The model (7.6) then has
an exact ancillary (z; — z,...,2, — Z) and correspondingly the model (7.5) has a first
derivative ancillary at 6y. We call this a tangent location model.

In terms of the original coordinates the ancillary direction vector V' = v has ith

coordinate
_O0F;(y;0)/06

OF, (y;0)/ay lo° (7.7)

v;(y) =

This approach has been extended to the vector parameter case in Fraser & Reid (1994)
and Fraser, Monette, Ng & Wong (1992).

8. DISCUSSION
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For a general asymptotic model with n dimensional variable y and p dimensional
parameter we are concerned with inference for a scalar parameter 1 = 9 (6).

The tangent location model in Section 7 at a data point y° gives the tangent directions
V = (v1,...,vp) to a third order ancillary.

The tangent exponential model to the conditional distribution is then available from
(5.7) using £°(0) and £3,(0). Third order significance p(3) for testing ¢ is then given
by (6.1) or (6.2) using the signed profile likelihood (3.15) and the adjusted maximum
likelihood departure (6.8).

For an indication of the high accuracy with these current likelihood based approxima-
tions, see for example Fraser (1990), DiCiccio, Field & Fraser (1990), Abebe, Fraser, Reid
& Wong (1994), Cheah, Fraser, & Reid (1994), Fraser, Reid & Wong (1994).
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