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SUMMARY

Recent likelihood asymptotics has produced highly accurate p-values for many very
general contexts. The terminal formulas for producing these p-values can however have
certain singularities, at the maximum likelihood value and at extremes of the range of the
parameter being assessed. The singularity at the maximum likelihood value is a down-
stream version of one addressed by Daniels (1987) for the scalar saddlepoint context; he
provided an approximate value at the singularity, which involved a standardized third order
cumulant. For a general statistical context we develop a third order bridge for the p-value
formula at the maximum likelihood singularity, for the case with no nuisance parameters,
and a second order bridge at the singularity for the case with nuisance parameters. We also
develop a third order graphical procedure for bridging which handles cases both without
and with nuisance parameters. The combining formulas can also produce p-values outside
the allowable [0, 1] range. Several alternative combining formulas are developed that avoid
these improper p-values. Simulations examine reliability and accuracy.

1. INTRODUCTION

The saddlepoint method introduced to statistics by Daniels (1954) and Barndorff-

Nielsen & Cox (1979) gives a highly accurate approximation for a density function with
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known cumulant generating function. Lugannani & Rice (1980) used the saddlepoint
method to develop a distribution function approximation as an alternative to numerical
integration of the approximate density function. The Lugannani & Rice (1980) approxi-
mation has a singularity at the saddlepoint, which can be replaced (Daniels 1987) by its
limiting value, a multiple of a third order standardized cumulant. Barndorff-Nielsen (1986)
developed an alternative distribution function approximation as part of extending results
beyond the exponential model context.

These distribution function approximations quite generally use two rather different
inputs of information from likelihood. The first is almost always the signed square root r
of the log likelihood ratio given below at (1.3). The second is some appropriately defined
maximum likelihood departure g; the search for the appropriate ¢ has been the recent focus
for obtaining progressively more general p-values in likelihood asymptotics.

These two inputs are combined using either of the following two formulas to give a
third order p-value for testing a scalar parameter value:

Bun(r,q) = B(r) + 6(r) (1 - 1) , (1.1)

r o q
dpN(r, q) = <I>{r — 1 log(r/q)} , (1.2)

due to Lugannani & Rice (1980) and Barndorff-Nielsen (1986) respectively, as developed
for specific contexts; ¢(r) and ®(r) are the standard normal density and distribution
functions.

In the cases we consider, r is the likelihood root, the signed square root of the log

likelihood ratio statistic,

) = sen(h — ) [2{£G:0)  £Byi)})] (1.9

where £(0; y) is log likelihood, 1 () is the scalar interest parameter with tested value v, and
f and éw are the maximum likelihood values without and with the constraint ¢ (0) = .

The definition of q is less straightforward as it typically depends on more than just observed
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likelihood; several expressions are recorded below at (2.2), (2.11), (4.1). Both r and ¢ are
standard normal to order O(n_l/ 2), but with the appropriately defined ¢ the p-values given
by (1.1) and (1.2) are distributed under the model as uniform (0,1) to order O(n=3/2).

We are assuming that we have a continuous statistical model f(y;#) with dimensions
n and p for y and 0, and that 1 (0) is a scalar parameter of interest. The reduction in
dimension from n to p is achieved in principle by conditioning on an approximate ancillary
statistics, but only the tangents to the approximate ancillary are needed at the data point
of interest. It is shown in Fraser & Reid (1995, 2000) that these tangents can be obtained
from a full dimension pivotal quantity z = z(y; #); related details are recorded in Sections
2 and 3.

The r and ¢ in (1.1) and (1.2) are functions of ¢ and y and are both close to zero when
1) is near zﬁ(y) This poses obvious numerical difficulties for the evaluation of r=1 — ¢!
and r/q; see Figure 3.1 for an example of numerical perturbations near the maximum
likelihood value. Also, for extreme values of 9, the second term in (1.1) can overwhelm the
tail probability from the first term and give a value outside the acceptable range [0, 1] for
a p-value; see Figure 2 for an example where a range of values less than zero are recorded
for large values of the parameter.

In Section 2 we examine an asymptotic model with scalar variable and parameter and
define two measures of how the asymptotic density of the signed likelihood ratio departs
from the standard normal; asymptotic expressions are obtained for the measures and they
are seen to be essentially equivalent.

In Section 3 we examine the scalar parameter case and use the two measures of
departure to develop a third order bridge for the singularity at the maximum likelihood
value.

In Section 4 we examine the case of vector full parameter  with scalar interest pa-
rameter 1 = ¢ (6). The techniques from Section 2 are then used to develop a second order

bridge at the maximum likelihood value.



Then in Section 5 we use functional properties of the departure measures to develop
simple third order graphical procedures for bridging at the maximum value, for both the
scalar and vector full parameter cases.

In Section 6 we consider alternatives to the combining formulas (1.1) and (1.2) to

avoid the possible singularities at the extremes of the parameters being tested.

2. DEPARTURES FROM STANDARD NORMALITY: SCALAR CASE

Consider first the case of an asymptotic model with scalar variable and scalar param-
eter. Many properties for the more general context can be derived from this case. We
assume the model f(y;0) leads to a log density £(0;y) = log f(y;6) that has the usual
asymptotic properties, such as £(8;Y) = Op(n), var {£/(6;Y)} = O(n) and so on. For
testing a value 6, the likelihood quantity ¢ above is intrinsically based on a locally defined

reparameterization,

0
#(0:9°) = 5 b0 9)] o = Ly (0:0) (2.1)

which is the canonical parameter of the tangent exponential model at the data point y° of

interest (Fraser, 1990). This is used to form the standardized measure of departure

a(0;y) = (¢ — @)}
= {£40;9) — Ly (0:9) Y35 451 (B ) (2.2)

where jgs = —£"(f;y) is the observed information and £y, = 82£(6;y)/000y = dp/d0
evaluated at the maximum likelihood value é(y) adjusts the information standardization to
that for ¢. The likelihood based third order approximation to the density of the likelihood
root r(0;y) is then given by

exp(k/n)¢(r)(r/q) dr (2.3)
where k is a constant to third order. This can be obtained by change of variable from y to
r starting from the p* formula (Barndorff-Nielsen, 1983) or starting from the saddlepoint

approximation to the tangent exponential model (Fraser & Reid, 1995, 2000).
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We investigate how the third order likelihood based distribution for r differs from the
nominal standard normal of first order theory; and we can do this in terms of the density
function (2.3) or the distribution function versions (1.1) and (1.2).

In terms of its functional form the expression (2.3) has the factor r/q attached to the
basic standard density ¢(r). The factor r/q is greater (or less) than 1 according as a tail
of the density for r is thicker (or thinner) than that of the standard normal. As a measure
of departure from standard normal we then examine how r/q exceeds 1 taken relative to

T

dl(r):1(5—1> :g—%. (2.4a)

q

We could also examine the distribution function (1.1) and how it falls short of the nominal

®(r), taken relative to the density ¢(r),

o(r) T g

dy(r) = (r) — @u(r,q) _ 1

S | =

; (2.4d)

this gives the same measure.
For a second measure we examine the argument of the distribution function approxi-
mation (1.2); the argument is usually designated r*. We consider how it falls short of the

nominal normal deviate 7:
do(r)=r—1r*= L log(r/q) . (2.5)

We now determine the asymptotic form of these departure measures, as a means to
bridge the singularity at the maximum likelihood point. Taylor series expansion methods
were used in Cakmak et al (1998) to determine the local form of a statistical model rel-
ative to a particular data point, say y°. In Appendix A these results are used to obtain

asymptotic expressions for d; and dy for fixed data y = y° and varying 6:

a3 gy — a%

di = —
g — o7} L 304 — 40:%
27 Teni/2 on



For this a3 and a4 are standardized third and fourth derivatives of the log density £(p; )
with respect to ¢ at {p(8°),2°} and ¢ = () and = = z(y) are local reexpressions of
and y that are used to obtain the tangent exponential model approximation relative to the
data point y°. Explicit expressions for ¢(#) and z(y) are recorded in Andrews, Fraser, and
Wong (2001).

In a parallel way Abebe et al (1995) determined the local form of the model relative
to a particular parameter value, say 6y. In Appendix A this is used to obtain asymptotic

expressions for d; and ds for fixed fs and varying y:

a3 3aq+4a3+ 6

dy = —

! 6”1/2 24n (2 7)
g 03 9as+ 13a3i + 18

27 6nl/? 2n '

In (2.7) as and a4 are standardized third and fourth derivatives of £(¢;z) with respect to
z at {p(0o),(0p)} where Z(0p) is the maximum density point for 6y, and ¢ = (f) and
x = z(y) are local reexpressions of § and y that are used to obtain the tangent exponential
model relative to the parameter value y; the constant ¢ is a measure of nonexponentiality
and is given as 0*4/0¢20x? evaluated at {©(6p),z(6p)}.

If 6y = B(yo) or if yo = §(6p) then the expansion coefficients are linked by the norming
property which gives az = az+0(n="?), ay = ay —3a2 —6¢+0(n"1/?). Both expressions
for the d; are accurate to O(n=3/2).

Some clarity on the roles for the two versions (2.6) and (2.7) arises by noting that r
and ¢ are functions of y and € for a moderate deviations range from some initial yo or 6y of
interest. Along the curve C = {(#,y) : 0 = A(y)} we have r = ¢ = 0 and to first derivative
we have r = ¢q. The departure measure is then describing how r and ¢ differ beyond the
first derivative.

We could have started with a point (6o, yo) with some particular value for r» = (6, yo)
and then used (2.5) to examine change in r for fixed yo or (2.7) to examine change in r

for fixed 60y. For this we note that the ags, asy would be values determined on C' with the
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particular yq, and as, a4, C would be values determined on C with the particular 6y. The

details for this may be found at www.....

Ezample 2.1. Cauchy location model.

Consider the location Cauchy f(y — ) = 7~ {(1 + (y — )2} ' with n = 1. For this

we have § = y and
r =sgn(y — 0)[2log{1+ (y — 0)*}]'/?,

¢=V2(y-0)/{1+(y—-0)°}.

The exponential parameter can be standardized, ¢ = 1/20/(1 + 62), giving

from which we obtain ag = 0, ay = 9, and thus dy = ds = %r. The lack of skewness
removes differences between the two versions of the departure measure.

More generally when the parameter 6 is a scalar but the observable variable has
dimension n we define a vector v by

v = —zy_,lz;g: (4,69 (2.9)

where z = z(y,0) is an n x 1 vector of natural pivotal quantities. As shown in Fraser
& Reid (1995), this vector can be used to define a canonical parametrization ¢ for the
original model, and then defining ¢ as the standardized maximum likelihood departure in
this parametrization ensures that (1.1) and (1.2) are third order approximations to the
p-value conditional on an approximately ancillary statistic. Thus the dimension reduction
from n to 1 is achieved by conditioning on an approximate ancillary statistic, but this
ancillary is not explicitly needed, just the derivative of £ in the directions (2.9) for the

ancillary at the data point. Using v, the reparameterization ¢ in (2.1) is generalized to

d

e(0;y°) = %E(G;y)\yo =L,y (0;9°)v , (2.10)
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and the expanded expression for ¢ in (2.2) uses derivatives in the direction v rather than

with respect to the original scalar y:
9(0;y) = {€0(0;y) — £0(0;9)} 95 Lo (B; ). (2.11)

In this more general context the expressions (2.6) for the departure measures remain
available, but the versions (2.7) for varying data point are typically not available, as they

would need model information along the contour of the observed approximate ancillary.

3. BRIDGING THE SINGULARITY: SCALAR CASE

The measures of departure developed in the preceding section provide a simple and
direct means for bridging the maximum likelihood singularity in the p-value formulas.

;From (2.4b) and (1.1) we obtain

p1(0) = @(r) — digp(r)

=®(r) + (67?13/2 + a42;na§ 7‘) e(1), 1)
and from (2.5) and (1.2) we obtain
p2(0) = ®(r — d2)
— 402 3.2
=® (T + 7t 3a472n - T) ' >

These can be viewed as Bartlett type corrections to the likelihood ratio but are derived

from observed likelihood.

Ezxzample 3.1. Cauchy location model.

Counsider the location Cauchy model with data y = 0, as examined in Example 2.1.
From the two bridging formulas we obtain

3

p1(0) = @(r) — §T(‘D(T)

pa(6) = B (%) .
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The exact p-value is of course available as
p(0)=.5+7 "tan! { + (e’"z/2 - 1)1/2} .

At r = 0 all three are equal to 0.5. At close to » = 0 we check numerically; at the point

say r = 0.1 we have

p1 = .524942
po = .524918
p = .522499

The rather small departure of the approximations from the exact is of course due to the
almost impossibly small sample size n = 1 and to the sharp peak at the centre of the
Cauchy model.

For the bridging formulas (3.1) and (3.2) we could have done a full Taylor series
expansions in 7 but, as in many similar asymptotic calculations, there are advantages to
retaining the ¢(r) and ®(r) which reflect the dominant role of the signed likelihood ratio

r.

Ezample 3.2.  Consider the simple gamma model on the positive axis,

fly;0) =T7H0)y’ e ¥,

with data y = 10. The significance function p(f) is plotted in Figure 5.1. Note the
computational irregularities near the maximum likelihood value 6 = 10.495838. Simple

calculations give ag = —0.315901 and a4 = 0.199422 from which we obtain
dy = 0.0526502 + .00276517r ,

giving the bridge
pa(6) = ©(0.9473498r — 0.0526502) .
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The likelihood approximations ®rr(6), Pn(f) are plotted in Figure 3.1 together with the
bridge pp(f) and the exact px (). Clearly a simple algorithm can choose between the

approximation and the bridge to give a close construction for the exact.

4. BRIDGING THE SINGULARITY: SCALAR INTEREST

Now consider a continuous statistical model f(y;6) with dimensions n and p for y
and € and let 1(0) be a scalar interest parameter with say 6’ = (X', ). Again there is an

approximate ancillary with vectors V' = (v; - - - v,,) given as

1 A
V=2 2 4o o)

where z = z(y, 6) is now an n x p array of natural pivotal quantities. The exponential type

parameter is

d
©'(0;9°) = WK(G;y)\yo = L,y (0;4°)V

and d/dV gives a row vector of directional derivatives; for some discussion of examples see
Fraser, Wong & Wu (1999).

For testing ¥(0) = 1) using (1.1) or (1.2) the r is given by (1.3) and the g by the
following extension (Fraser, Reid & Wu, 1999) of (2.2) and (2.11):

|1/2

o = sga(l = )0 Ro) e (1)

|J(>\,\) (@w)

where the numerator and denominator determinants are the full and nuisance information
determinants recalibrated on the ¢ scale, and x(p) = u:’bgo is a rotated ¢ coordinate based

on a unit vector

_ Vi (Py)
%o (@)

perpendicular to ¥{6(¢)} at the constrained maximum likelihood value @,.

Usp

For bridging the discontinuity at the maximum likelihood value w(é) = 1), the calcu-

lations are more complex and we temporarily restrict our attention to O(n~!) accuracy.
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Let £(p) = £°{0(); y°} be the observed likelihood reexpressed in terms of ¢ and suppose

it has been normed and recentered and rescaled so that ¢ = 0, £(0) = £,(0) = 0, and

£y, = —I. Then in tensor summation notation we have
1 ij 1 ijk
L(p) = TR T TR PiPiPk (4.2)

to second order. Also for convenience we restrict attention to a p = 2 dimensional param-
eter.

For the scalar interest parameter ¥{f(¢)} we suppose that the ¢ coordinates have
been rotated so that (o) = 1 is tangent to 3 = 0 and has been relocated and rescaled
so that ¢ = 0, 0¢/dp; = 1, 8%¢p/0p? = 0 at the maximum likelihood value ¢ = 0; then
() = @1 4 cp2/2n1/2? where ¢ is a second derivative measuring the curvature of ¢ = 1)
at ¢ = 0.

The signed likelihood ratio for testing ¢ can be calculated to the second order giving

111, .2
a7

r=—Y1—

The maximum likelihood departure (4.1) uses a unit vector u,, which is the first coordinate
vector at ¢ = 0 and locally can change direction by O(n~'/?); the departure, however,
X — Xy = —¢1 to second order based on the cosine of an O(n~1/2) angle. The nuisance
information is

A ) al2p;  cp
Jow () =1+ ni/2  pi/2

It follows that

Q20 cpr
q = _(pl (1 2n1/2 2n1/2> (4'4)
Combining (4.4) and (4.3) we obtain
_ 122 111 r
q—r{1—|—(a c+a /3)2711/2}
from which it follows that
d=—(a™! + 30?2 - 3¢)/6n'/? . (4.4)
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The bridging p-value formula is then

to second order.

5. GRAPHICAL BRIDGING OF THE SINGULARITY

For the case of a scalar full parameter we have seen in Section 2 that the departure
measures (2.4) and (2.5) are linear in r to the third order and thus provide simple third
order bridging, using (3.1) and (3.2). For the more general p-dimensional full parameter
1 we have from Section 4 that the departure measures are constant (4.4) to the second
order.

The development (Fraser & Reid, 1995, 2000) of the p-value formulas from tangent
exponential model approximations records the p-value as a tail probability from any ad-
justed asymptotic density; and Cheah et al (1995) show that such an adjusted density is

itself an asymptotic model. Together these show that the departure measures
di=q ' —r7t, dy=r""log(r/q) (5.1)

are asymptotically linear in r to the third order under parameter change for fixed data.
This is of course consistent with the familiar location-scale standardizations of the signed
likelihood ratio that gives a third order standard normal variable.

Now consider a particular assessment of a paramater ¢ with given data together with
possible instability in the p-value formulas (1.1) and (1.2). We propose plotting d; and ds
against the signed likelihood ratio r. Any instability in the p-value formulas will show in
dy, and ds, as ®(r) is typically smooth. Accordingly we propose fitting a line for d; or ds
plotted against r, excluding the middle possibly unstable values and the extreme values;
the fitted d; or dy is then used with (3.1) and (3.2) to bridge the singularity.

Ezample 5.1.  Consider the gamma model with mean p and shape parameter [,

B
F(ys . 8) =T=(8) (g) yPle—mlf
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and data from Fraser, Reid and Wong (1997). For testing the parameter p we record the
approximations ®pr(p) and ®pn(p) in Figure 5.1. Note the aberrant behaviour near the
maximum likelihood value i® = . For bridging the i° value we plot d; and dy from (5.1)
against the likelihood ratio r, in Figure 5.2. The bridging p value using (3.2) with the

marked segment of the straight line fit for dsy is then recorded in Figure 5.1.

6. DISCONTINUITY AT THE EXTREMES

The familiar combining formulas (1.1), (1.2) typically give values very close to each
other and the Lugannani & Rice version (1.1), is often closer to the exact; see for example
Pierce & Peters (1991) and Fraser, Wong & Wu (1999). The first formula however has a
disadvantage in that it can produce values outside the acceptable [0, 1] range for p-values.
The mechanics of this can be seen in the scalar parameter case with say large values of r.
We consider this from a distribution function viewpoint (fixed 6) rather than the p-value
viewpoint (fixed y).

For large values of r the first formula can be viewed using (2.3) as the integral of a
normal density ¢(r) together with an adjustment factor r/q. The first correction term to
®(r) in (1.1) is ¢(r)/r which provides the Mills ratio evaluation of the right tail of the
normal. As the Mills ratio for the normal is typically on the large side, this first correction
can produce an approximate value greater than 1. The second correction is r/q times the
Mills ratio and provides an adjusted Mills ratio appropriate to the scaled density (2.3). If
the right tail is very thin and r/q is small, then this compensating adjustment may not
be enough to bring the value below 1. A reasonable objective is a modified formula that
generally tracks the Lugannani & Rice (1.1) but avoids the singularity just described.

Formula (1.1) can be written
®1(r, d) = ®(r) + do(r)
using the nonnormality measure d; from Section 2 which takes the form (2.7) in the fixed

0 context. We can consider this for any fixed r and then examine convergence as d goes
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to zero:

D(r;0) = d(r) O(n=3/?)
©4(r;0) = p(r) O(n™") (6.1)
Byq(r;0) =0 o(n=1?) |

where the subscripts denote differentiation. The second formula (1.2) can be written
Dy(r;d) = @(r — r~log(1l — rd))
=o(r +d+rd2/2)
which of course satisfies (4.1) as is easily checked by differentiation or expansion.
For simulations the tail singularity with the Lugannani & Rice (1.1) formula can be
avoided by compressing towards the Barndorff-Nielsen (1.2) formula; for the right tail of

the distribution function use
@ (r,q) = min{®y(r, q), .50Ps(r, q) + .50} (6.2a)
and for the left tail use

Do (r, q) = max{®(r,q),.50P2(r,q)} . (6.20)

This retains the third order asymptotic property (6.1) but limits the value to being at most
half way from ®5(7,q) to the particular bound. Alternative proportions even proportions
dependent on r can replace the .50 above.

Another way to avoid the tail singularity is to back reference towards a model with
asymptotic properties but also an exact p-value answer. Consider a sample from the normal

(4,02). Then r and q for testing p are

t2 1/2
rz:l:{nlog(l—i— )}
n—1

" n 1/2 t
1==\n-1) 1+8/m-1

and the exact p-value is H,_1(t) where t = n'/2(y — u)/s, and H;(-) is the Student

(6.4)

distribution function with f degrees of freedom. It is of interest that the same r and ¢
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arise if we make reference to the simple location model H,,_1(t — ). The Student has

thick tails, that is /g > 1. Thus for a general problem with /¢ > 1 we can use

Og(r,q) = Hs(t) (6.5)
where
r=+{(f+1)log(1+#*/f)}'/?
(6.6)
¢==J/(f+1)/ftA+¢2/f)7".
An alternative approach is to use the gamma model
Fy;0) =T H(p)oPy?~ e~ (6.7)

which has a thick tail on the left and a thin tail on the right, although this may be somewhat

less than obvious. In terms of @ these properties are reversed. The exact p-value is

G, (2) = / TPy le A dz (6.8)

using z = fy and allowing for the inverse relationship between 6 and y. The r and q are

r={2(z +logp — p — log 2)}*/*

“V2(p— 2) ;

q=7p
from which z and p are easily obtained numerically.

The gamma combining formula can be described as follows. If » > 0 then

Q¢ (r,q) = Gp(2) ifr/g<1
=1-Gp(z) > 1;
and if r < 0 then
Qi (r,q) = Gp(2) ifr/g>1
=1-Gp(z) < 1L

The Student and Gamma approximations also inherit the third order properties described

by (6.1).
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In normal distribution sampling the Student modifications ®s will give an exact p-value
for testing the location . Then, as suggested by Prof. John Tukey, this approximation
would be preferable for location scale analysis where the error distribution could be at or

near the normal form; for some related discussion see Fraser, Wong and Wu (1999).

Example 6.1.  Consider the noncentral chi-square distribution with noncentral p? = 1
and degrees of freedom equal to f = 5. With p as parameter we use the asymptotic ap-
proximations (1.1) and (1.2) to approximation the distribution function for the chi squared
variable 72 when p? = 1; see Figure 6.1. The modification ®¢ from (6.2b) is also plotted
there; it does avoid the long range of negative p-values for small values of 72 but still
falls short of the exact. We do note that the left end of the distribution corresponds to a

singularity in the asymptotic model.

ACKNOWLEDGEMENTS

This research was partially supported by the Natural Sciences and Engineering Re-
search Council of Canada. The authors wish to acknowledge stimulating and valuable
discussion with Nicola Sartori from the University of Padova while he was visiting the
University of Toronto.

APPENDIX

Derivation of (2.6), (2.7)

In the case that y and 6 are both scalars we can examine the asymptotic form of
d(r,q) as a function of r and ¢ by expanding the log density £(0;y) = log f(y;6) about
a reference point in terms of standardized deviations for y and for . A data-oriented
expansion (Cakmak et al, 1998) uses (Ap,yo) = (9(y0),y0) and standardizes with respect
to coefficients of §2 and fy. If the departures are then reexpressed in exponential model
form to the third order we obtain the log likelihood at yo and the log density at 6y given
respectively by

(0% 3 Qg 4
6n1/29 - %0 , (A.1)

1
£(0; y0) = —592 —
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and

R L e VAT R )
(A.2)
The only nonzero mixed derivative terms to this order are yf and cy?6?/4n. The constant
a = —log(2r)/2. The as and a4 are the standardized cumulants of the null density,
and c is a measure of nonexponentiality; these are intrinsic parameters describing shape

characteristics of the model. For some recent details see Andrews, Fraser & Wong (2000).

From this an expansion for ¢ in terms of r for fixed y = g is obtained,

_ a3 o HaZ—3ay 5
q—r+—6nl/2r +772n o,

which gives

1 1 o3 Qs — a3
S =211-
q r{ 62" T Todm |

and thus gives an expression for the nonnormality measure with y fixed,

o3 g — o
.

dy = —
! 6n1/2 24n

(A.3)

For a parameter-oriented expansion (Abebe et al, 1995) we can use (6o, yo) = (6o, §(60))
and standardize with respect to coefficients of y2 and y. If the departures are then reex-
pressed towards exponential form we obtain the log density at 6y and the log likelihood at

Yo given respectively by

kg 1 9 as 3 Q4 4
— — = A4
TV TenEY T oY (4.4)
and
as 1 as+2a3+c¢) , a® 3 as+3ai+6e,,
_ B gty plariestcolg 07 g5 6 A5
2n1/29 2{ T 2n f 6n1/2 24n (4:5)

together with mixed derivative terms y6 and cy?6%/4n. From this an expansion for ¢ in

terms of r for fixed # = 0 is obtained,

43 n 9a4 + 14a? + 180713
6n'/2 72n ’
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which gives

1 as 3aq + 4a3 + 6¢ ,
1-— r— r
6n1/2 24n

and thus gives an expression for the nonnormality measure with 6 held fixed:

as 3a4 + 4a§ + Gcr

dy = — _
2 6nl/2 24n,

(A.6)

The two expressions for d can be interrelated by taking the model (A.1,2) centered at
(éo, y°) and reexpressing it in the form (A.4,5). For this we take §p = 60 which is zero in
(A.2), and obtain §(fy) = as/2n'/? + O(n~'); this then gives as = as, to order O(n~!)
and a4 = a4 — 302 — 6¢ to order O(n=1/2). The constants k; and ky check under the

reexpressions. We can then record (A.6) as

as 3ay — a3 — 12¢
do = — - . A.
27 Toni/2 24n r (A7)

Formulas (A.3) and (A.7) both use standardized likelihood cumulants a3, a4 for a point

(Yo, 6p) with r = 0; they record the change in d for fixed yo and for fixed 6y respectively.
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LEGENDS

Figure 3.1. The gamma model I'"}(8)y%~! with 4° = 10. The asymptotic approxi-
mations @1 (0) and ®pn(#) for the p-value function px (0) for testing 6 are plotted against
6. The bridge pp(0) at the Maximum likelihood value is superimposed on the exact px ().

Figure 5.1. For the gamma model with mean p and shape (8 the p-value approx-
imations ®rr(p) and Ppn(p) for testing p are plotted for a sample of 20. The aberrant
behavior at the maximum likelihood value is succesfully bridged using (3.2) together with
a graphical dy determined from Figure 5.2.

Figure 5.2. For the gamma model and data for Figure 5.1, the departure measures
d; and dy are plotted against the signed likelihood ratio r and a bridging straight line is
obtained graphically.

Figure 6.1. The approximations ®; g and ®py for the distribution function of the
noncentral chi-squared distribution with degrees of freedom 5 and noncentral e? = 1. The
compression modification ®¢ avoids the negative values found with the ®r approxima-
tion.
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