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With a parametric model, a measure of departure for an interest parameter is
often easily constructed but frequently depends in distribution on nuisance pa-
rameters; the elimination of such nuisance parameter effects is a central problem
of statistical inference. Fraser & Wong (1993) proposed a nuisance-averaging or
approximate Studentization method for eliminating the nuisance parameter ef-
fects. They showed that, for many standard problems where an exact answer is
available, the averaging method reproduces the exact answer. Also they showed
that, if the exact answer is unavailable, as say in the gamma-mean problem, the
averaging method provides a simple approximation which is very close to that
obtained from third order asymptotic theory. The general asymptotic accuracy,
however, of the method has not been examined. In this paper, we show in a gen-
eral asymptotic context that the averaging method is asymptotically a second
order procedure for eliminating the effects of nuisance parameters.
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1. Introduction

Studentization can be viewed as the general process of eliminating nuisance
parameters from a pivotal quantity and has its origins in the Student (1908)
investigation of the mean of the N(u, 0?) distribution: the measure of departure
(§ — w)/(o/+/n) is standard normal but involves the nuisance parameter o; the
adjusted measure of departure (§ — u)/(sy/+/n) is free of o and has the Student
(n — 1) distribution.

More generally, many problems lead easily to a factorization of the density for
a sufficient statistic in the form

5, 0) = feltls;1, A) fm (53 0) I (5,1) 1)

where ¢ is the parameter of interest, A\ is the nuisance parameter, and (s,t)
is equivalent to x with Jacobian J(s,t); for this, typically, s will be a statistic



and t will be a pivotal quantity for assessing 1, as in the above mentioned
Student example. As v is completely contained in the first factor, that factor
is commonly used for inference concerning ; however, this conditional density
still depends on the nuisance parameter .

For the case of scalar ¢ and A, Fraser & Wong (1993) introduced a nuisance-
averaging method as a device to eliminate A from the conditional density
fe(t|s;¢,N). Wong (1995) extended the averaging method to the case where
A is a vector. Fraser & Wong (1993) showed that for the location-scale prob-
lem, inference concerning the location parameter obtained via the averaging
method agrees with the general Student-type analysis obtained from standard
conditional theory. For other problems, such as the gamma-mean problem, the
averaging method leads to a simple inference quantity that agrees closely with
that obtained by nontrivial iterative and numerical calculations based on third-
order asymptotic theory.

The averaging method is reviewed in Section 2. In Section 3 the averaging
method is shown in a general asymptotic context to have second-order accuracy
for the elimination of nuisance parameter effects. Some concluding remarks are
given in Section 4.

2. The parameter-averaging method

Consider the factorization (1) with scalar parameters ¢ and A. As the nui-
sance parameter A in the marginal density of s is isolated from 1), it is typical
(Kalbfleisch & Sprott, 1973) to use f,,(s;A) for inference concerning A. The
confidence distribution function p(\) for the parameter A at a scalar data point
s is given by the probability integral transformation

s = [ " fus ) du (2)

This function inverts automatically to give standard confidence intervals; for
example, in the stochastically increasing case, a (1—a)x100% confidence interval
for Nis {p~1(1—a/2), p~*(a/2)}. Thus p(\) gives a convenient and appropriate
summary concerning A based on the observed data.

As the parameter of interest 1) exists only in the conditional density of ¢ given s, it
is appropriate (e.g., Kalbfleisch & Sprott, (1973)) to use f.(t|s; 1, A) for inference
concerning ¢. However, f.(t|s;1,A) still depends on the nuisance parameter .
A common and simple solution is to substitute an estimate of A, such as the
maximum likelihood estimate .\, into fe(t|s; 1, ) to eliminate A; for an example
in the literature see Shuie & Bain (1983) who examine the gamma model with



mean and shape parameter. Another solution proposed by Cox (1975) employs
a prior distribution for A which is combined with the f,,(s; A) density from (1)
giving a posterior distribution for A which is then used to eliminate A from
fe(t|s;40, ). This approach is referred to as the partially-Bayes method.

The nuisance-averaging method is to use the confidence distribution function for
A given by (2) to eliminate A from f.(t|s; 1, \); we then obtain

faltls;v) = /A Folt]s5,0) 1dp(V)] 3)

as an averaged conditional density for ¢ given s, this provides an appropriate
basis for inference concerning 1. In some problems p(\) may not exist in a
closed form: Fraser & Wong (1993) suggested that the asymptotic distribution
of the maximum likelihood estimate for A be used to approximate p()\). Some
applications of the averaging method are discussed in Fraser & Wong (1993)
for scalar 1 and A, and in Wong (1995) for scalar ¥ and vector A. In the next
section, we show that the parameter-averaging method is a second order method
for eliminating the nuisance parameter from the conditional density. In contrast,
the estimate substitution method as in Shuie & Bain (1983) is of first order. For
the partially Bayes method, different priors can give different results; accordingly
we do not examine it here.

3. Second order accuracy of the parameter-averaging method

Consider a statistical model with asymptotic properties as discussed, for exam-
ple, in DiCiccio, Field & Fraser (1990), and in Fraser & Reid (1993); typically
these properties hold in the sampling case or more generally in the case with
increasing data bearing on the same parameter. The use of an approximate third
order ancillary has been discussed by Barndorff-Nielsen (1991); various construc-
tion methods for such third order ancillaries have been given by Fraser & Reid
(1995). For the present analysis, we assume that our model is the conditional
model obtained from such an ancillary reduction; we also assume for simplicity
that the interest parameter 1) and the nuisance parameter A\ are scalars. For
the analysis we will use large-sample approximations and present these in terms
of various location scale standardized variables: these approximations use the
normal density together with cubic correction terms.

Now suppose the model f(s,t;1, ) can be factored as in (1) so that the pa-
rameter of interest ¢ is isolated in the conditional distribution. In addition we
assume that the conditioning is on the nuisance parameter score at the maxi-
mum likelihood value, at least to the first order; in particular this ensures that
the conditional distribution is first order independent of the nuisance param-



eter. As a special case we can have conditioning on the nuisance parameter
maximum likelihood estimate using a nuisance parameter that is orthopgonal to
the interest parameter.

We consider testing a particular value for 1); thus ¢ can be considered now as
a fixed value. For the asymptotic analysis we follow patterns in the references
just given and assume that ¢ and s with A have been location scale standardized
and that A is orthogonal to 1; then to the first order we have that ¢ is N(0,1)
and s is N (A, 1), and to the second order we include cubic corrections.

First consider the marginal distribution for s; following Abebe et. al. (1992),
we have then the availability of the location model approximation

(s =) (s = 2)°
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to the second order; for some related discussion see also Fraser & Reid (1993).

+0p(n™") (4)

Now consider the conditional density for ¢ given s; following Fraser & Reid,
(1993), for the fixed 7 (under the null hypothesis), we then have that the log
conditional density for ¢ given s for say A = 0 can be standardized to have the
asymptotic form

t? t3
log fe(t|s;A=0)=a— 5 T b36n—1/2

The more general form for A # 0 would have mean and variance adjustments of
order O(n~"/?):

+0p(n7"). (5)

t3
6nl/2

this follows from the requirement on the conditioning variable.

tA A
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The ordinary Studentization procedure would involve working with the adjusted
variable
B t—clj\/nl/2 )
1—ch/2nt/2
Substituting ¢ obtained from (7) into the equation (6) gives the log conditional
density
T(A-)) T2 (A=) T3 .

logfc(T|s;/\)=a—|—01W—7 1+02W +b3W+Op(n ); (8)
then with A distributed as N (), 1) to order O(n~'/2) we obtain the marginal log
Studentized density for T

2 T3
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By contrast, the nuisance-averaging method (3) would use the N(}, 1) distribu-
tion for A to average (6) giving the marginal-type log density

th ot A 3 5
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for the variable ¢t. Making the change of variable (7) to T gives the log nuisance-
averaged density for T,

T? T3
log fa(T) =a— > + b36n—1/2

which agrees with (9). We thus have the equivalence to the second order of the

+0,(n1), (11)

log densities: the log parameter-averaged density (11) is equivalent to the stan-
dard log Studentized density (9). Also we note that we only need the first order
asymptotic distribution for the nuisance parameter to accomplish the averaging.

As a final note, if we just substitute A for X in the conditional density (6), we
would obtain just a first order approximation.

4. Discussion

The parameter-averaging method discussed in Fraser & Wong (1993) is shown
to be a second-order device for eliminating nuisance parameters. Alternatively,
if we replace the nuisance parameter by its maximum likelihood estimate (as in
Shuie & Bain 1983), we obtain just a first order method.
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