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In exponential families, the approximation to the cumulative distribution function of
the sample mean can be simply expressed in terms of likelihood quantities. This means that
the likelihood function can be converted to an approximate tail area or significance level.
In more general contexts, conditional or marginal likelihood functions can be similarly
used to compute tail areas. The conversion is described and illustrated, and extensions to
more complex models are briefly considered.
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1. Introduction

In this paper we are concerned with accurate approximation of tail probabilities, i.e. prob-
abilities of the form Prg(T > t°), where T is a random variable whose distribution
depends on @, and t° is some fixed value. If the distribution of T is continuous, this is
equivalent to approximating the cumulative distribution function of T , and in applications
to significance testing we may often want to compute Fy(t*) = Pro(T < t°). Typically
T is a statistic derived from a sequence (X1,.-.,Xn) and #° is the observed value of T
for a sample (z1,...,z,). Approximating the tail probability is then equivalent to ap-
proximating the observed significance level or p-value for testing the value 8. In the case
that T has a lattice distribution, some continuity correction may be needed to convert the
cumulative distribution function into a p-value. This is discussed in Daniels (1987), and
Barndorff-Nielsen and Cox (1989, Ch. 4), and several examples are considered in Pierce
and Peters (1991).

The approximation we will consider is best illustrated for a sample mean. Let
X1,...,Xn beindependent, identically distributed random variables, and X = n-! X
Define the cumulant generating function of X; by K(t) = log[E{exp(tX,)}]. The sad-

dlepoint approximation to the density of X is given by
fel3) = ca{n/|K"(£)]}'/? exp{nK(f) - niz), (1)

where { = {(1) is called the saddlepoint and is defined by

K'(t) = 7. (2)
Approximation (1) has a relative error of O(n=3/3)  je.
fr(2) = fr(2){1 + O(n™%?)) (3)

and although the magnitude of the relative error depends on I . the approximation is

often very accurate even in the extreme tails of the density. The normalizing constant ¢,
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defined in (1) can be shown to satisfy
en = {1/v(20))? {1+ 0(n"1)}, (4)

when X; is a p-dimensional vector. (In the case that X; is a vector, K"(t) is the px p
matrix of partial derivatives of K(t) with respect to the p components of t.)

The saddlepoint approximation to the density of X is derived in Daniels (1954),
by two different methods, and illustrated in several examples. A detailed discussion is
provided there of the regularity conditions required on the density of X;, and of the
behaviour of the error term for values of Z tending to the endpoints of the support of
f2(2). An overview of the density approximation, some applications of it to problems
in statistical inference, and several further references, are given in Reid (1988). Good
textbook references are Barndorff-Nielsen and Cox (1989, Ch.4), and McCullagh (1987,
Ch. 6).

Approximation (1) can be integrated to give an approximation to the cumulative
distribution function of X when X; and hence X are scalars. The key substitution is
to let nK(f) — niK'({) = —r?/2, from which rdr = niK"({)df = nfdz. The resulting
approximation is

Fe(z)=®(r)+a(r)(r~' —¢7") (5)

where

r=2VA2{-K(D) + {K'(1)))'/2,
g = Vat{K"(D)}'/.

The sign of r is chosen to match the sign of ¢. Approximation (5) is the basis for tail

(6)

area approximations for more general statistics. It has absolute error O(r=%/3) e
Fp(2) = Fg(2) + O(n73/%), (7)

for 7 in O(n=!/?) neighbourhoods of the mean. and error O(n~') for 7 in 0o(1)
neighbourhoods of the mean. It was derived by Lugannani and Rice (1980) and is of-

ten called the “Lugannani and Rice” approximation. It is derived by several routes,
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and illustrated, in Daniels (1987). A somewhat simpler derivation is given in Barndorff-
Nielsen and Cox (1989, Ch.4), adapting an argument due to Temme (1982). Note
that after making the change of variable from Z to f to r, the integral of (1) is
[7_ cnexp(=r1/2)(r/a)dr = ¢, [, §(r)(r/q)dr, where cy = 1+ O(n~!). Working

with the unnormalized form of the integral, we have

" syt = [ " ()1 4 /g = 1)dr

= &(re) + /_: o(r)r G - %) dr
o2 2) (i)

(-1 -

We now apply the results

(8)
d (1 - 1) = Zdr + O(n%/%)
roq n
to get
[ steranr = s+ 2+ o) (- 1)
and hence

(1+ a/n)-‘j " 6(r)(r/q)dr = ®(rs) + #(ra) (ln - -;:) +0(n"),

Since the right hand side approaches 1 as ry — oo, we have verified that a/n is the
O(n-') term in ¢, , and obtained the Lugannani and Rice result (5). The main work lies
in verifying (8), which is done by examining in detail the expansion of ¢ in terms of r.
Note from (6) that nr?/2 gives the first two terms in the Taylor expansion of KR(0)=0
about f.and ng?/2 is the third term. From this it can be shown that r - ¢ = O(n~1).

The particular integration by parts step above is given in Fraser and Reid (1991): see
also DiCiccio. Field and Fraser (1990). There are many different ways of establishing (8).

or directly relating the O(n~!) term in the expansion for ¢, to the difference between r
) g P n
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and ¢. In Fraser and Reid (1990), expansions for r and ¢ are obtained from the fourth
order expansions of either the cumulant generating function or the likelihood function. In
Daniels (1987), ‘q is expanded as a function of r directly. Barndorff-Nielsen and Cox
(1989, Ch. 4) verify directly that r/g = 1+ O(n~?). McCullagh’s results (1987, Ch. 6)
can be used to show that the O(n=!) term in ¢} is equal to a in (8).

Note that as derived, the right hand side of (5) is an approximation to the cumulative
distribution function of r, but since r is a one-to-one function of X , this is equivalent

to approximating Fg(-).

2. The exponential family

Suppose each X; comes from an exponential family density, which we write as
f(z;8) = exp{fz — k(8) + d(z)}.

Define the likelihood function L(8) = L(8;z;,...,2,) = I1f(z;;8), and the Fisher infor-
mation function j(8) = —3% log{L(8)}/86* . Then from (6) we obtain

r = sign(6 - 6)[2log{L(8)/L(6)}]'/?

9= (6-0)@)",
where § is the maximum likelihood estimate of 8, and satisfies the equation k'(4) = .

Note that K'(t) = k'(f +t), showing that { = 8 — 8, and that K"({) = k"(). Since 8

is a one-to-one function of I, we can write

- 1
FQ{9:9) = &(r) + o(r) (:

—1) +0(n~YY, (10)
q

with r and ¢ defined in (9). This shows that the distribution of the maximum likelihood
estimate can be accurately approximated by a relatively simple function of the signed

square root of the likelihood ratio statistic, r, and the Wald statistic. ¢ .
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The density approximation (1) also has a likelihood formulation for exponential fam-
ilies, which is
fo(8) = cali(B)*{L(8)/L(6)) (11)

and is often referred to as Barndorff-Nielsen's approximation {Barndorff-Nielsen, 1980,
1983). Barndorff-Nielsen and others have showed that (11), appropriately interpreted, also
provides a valid approximation in a great many models outside the exponential family. A
survey of some of these generalizations is given in Reid (1988). Similarly, the likelihood
version of Lugannani and Rice’s approximation can also be used in more general models.
This is the basis for several recent developments in tail area approximations.

An important feature of the likelihood function in the exponential family is that is
depends on the data z = (z,...,z,) only through the maximum likelihood estima-
tor, which is minimal sufficient. Thus there is little ambiguity in writing L(8)/L(8) for
L(8;z)/L(6:z), because L(6;2)/L(6;z) = L(8;6)/L(8;6).

3. The location family

Suppose each X, comes from a location family density, which we write as

f(z:8) = f(z - 6).

The likelihood function is L(8;z) = [1f(z, — §). Although in this model the likelihood
function depends on the entire vector of observations, z, there is a one-to-one transfor-
mation from r to (8,a), where a, = z.—8, a isavectorin R, and a is ancillary,

i.e. the marginal density of a does not depend on 8. Thus we can write
f(z:8) x f1(8la:8) f1(a)
and

L(6:r) x L(8:8.a) x f,(Bla:6..
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It is fairly straightforward to show that the conditional distribution of 8, given a, is

obtained by renorming the likelihood function. We can write this result, which is originally

due to Fisher (1934), in the form
£(8la;6) = c|j(8)]*/*L(6;6,a)/L(6;6,0) (12)

which makes the analogy with (11) explicit (although in fact in the location model i(8)
depends only on a and not on #). Result (12) holds for any transformation model
tBundorﬁ-Nielsen, 1980).

We might thus expect that a result analogous to the tail area approximation (11) also

holds in the location model, which is indeed the case. The result is

x 1
F(6la; 8) = ®(r) + 4(r) (% - ;) + 0(n=%7), (13)
where r is the signed square root of the likelihood ratio statistic, as before, and s is the
Rao statistic:

s = 5 log LO)L(O)[ . (14)

Note that (13) provides an approximation to the conditional cumulative distribution func-
tion even though (12) is exact. This version of the tail area approximation was obtained
in DiCiccio, Field and Fraser (1990) and Fraser (1990) as a special case of more general
parametrization invariant versions of (10) due to Barndorf- Nielsen (1988, 1990) and Fraser
(1990). Even though (10) was derived for exponential families, the similarity of the density

appproximations (11) and (12) suggested that (10) could hold more generally.
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4. General scalar parameter families

We assume that X; is from a one-parameter density f(z;8), but that there may not be a
sufficiency reduction to 4, as in the exponential family case, or an ancillary reduction to
(6,a), as in the transformation family case. We write L(6) = L(6;z) for the likelihood

function and I(6) for the log-likelihood function. Define the quantity t = ¢(6) by
t={i(6) - ((6)}&*(8)L(6)"?, (15)
where i(8) = 0l(6;2)/86, and k(8) = *1(6;2)/8098 . Then a parametrization invariant

version of the tail area approximation is

£ = 4) +40) (1 - 1), (16)
where r is as usual the signed square root of the likelihood ratio statistic. In the partial
differentiation of I(-) with respect to é in (15), some remaining n — 1 coordinates in the
sample space must be held fixed, and the notation doesn’t indicate how to do this. In the
location family, the ancillary coordinates a are held fixed, and the resulting distribution
18 conditional on a. In the exponential family, I(-) depends on z only through 8, so the
choice of coordinates is not necessary. In general models, a reasonable strategy is to reduce
by sufficiency, and then look for approximately ancillary statistics to condition on. This
strategy is used in Barndorff-Nielsen (1990) in establishing the validity of (12) to O(n~!)
in general models. Tail areas computed this way are described in Barndorff-Nielsen (1991).
An alternative approach for choosing sample space directions geometrically is described in
Fraser and Reid (1988). None of the solutions suggested to date are particularly easy to
implement.

The choice of coordinates is more important in multiparameter models, to be discussed
in the next section. In exponential and transformation models, nuisance parameters can be
eliminated by sufficiency or ancillarity arguments, but in general multiparameter models.

some further reduction is needed and the methods mentioned above may provide some

guidelines.
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5. Nuisance parameters in exponential families

In this section we assume that the multiparameter density takes the form

flzi 9, ¢) = exp{tpz1 + ¢$Tz(3) — k(¥, ¢) — d(2)} (an

where z is the vector of sufficient statistics, z(;) is the subvector of the last p -1
components of z, ¢ is the parameter of interest, and ¢ is a vector of nuisance parameters.

The nuisance parameters can be eliminated by conditioning, because

f(z1|za); ¥) = exp{yzy — ka(¥) — da(2)},

where k; and d; depend on z(3) in general, and are obtained from k and d in (17). !
The conditional log-likelihood function for ¢ is thus |

I5(¢) = ¥z1 - ka(¥)

and for fixed z(3) this depends on the data only through z,. That is, conditionally, the
model is a scalar parameter exponential family. Applying the result (10) in Section 2,
then, we have
By(9) =809+ 609 (- %) (18)
where ¥ maximizes () over ¥ , and
r¢ = £[201(6°) - ()]
¢ = (9 - )| - 1" ($°) 2
are the standardized likelihood ratio and Wald statistics for the conditional model. Equa-
tion (18) is an approximation to the conditional cumulative distribution function of ¢,
given I(3), and also approximates the conditional cumulative distribution function of r¢ |
zy ., or ¢°, since these are one-to-one functions of each other for fixed r(y).
In applications, the explicit form for k3(¥) may be difficult to obtain. particularly if
d(z) in (16) is not available in closed form. However, a saddlepoint approximation to the

marginal density of r(; gives

. ; 1 b
(w) = (v dy) + 5 log [1ge( L. 0y )] (19)
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where 1(4, dy4) is the log-likelihood for the full model (16), éy is the maximum likelihood
estimate of ¢ for fixed ¢, and jgg = —8*I(¢, $)/0¢06T is the nuisance parameter
submatrix of the observed information matrix. This type of approximation is discussed
in Barndorff- Nielsen and Cox (1979), Cox and Reid (1987), and Skovgaard (1987). It is
accurate to Op(n=*/?) in /n neighbourhoods of )¢ (Fraser and Reid, 1991).

With [°(y) approximated by (19), (18) provides an approximation to the cumulative
distribution function of ¢ also accurate to O(n~%/?), and to this order §°, r¢, and q
can all be computed from the approximate conditional likelihood. Numerical examples of
this approximation are discussed in Fraser, Reid and Wong (1991).

In many problems it will be difficult to obtain explicit expressions for 1°(y)), or
other components of the approximation. In Fraser, Reid and Wong (1991) first and second
derivatives of /() are obtained numerically. Further analytical approximation to (18) is
discussed iﬁ DiCiccio and Martin (1991). Some numerical examples appear in Pierce and
Peters (1991), and Butler, Huzurbazar and Booth (1991). Jensen (1991) shows that (18)
is closely related to the more general r* approximation of Barndorff-Nielsen (1986, 1990)

in this context.
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