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A real canonical parameter of a generalized linear model can
have third order tail probabilities or significance functions by
the saddlepoint analysis of Davison (1988). Recent methods
using asymptotically modulated densities can produce sec-
ond or third order tail probabilities for real or vector param-
eters in the presence of nuisance parameters; the parameters
need not be canonical and thus may be based on a noncanon-
ical link function. Examples are given for generalized linear
models.



1. Introduction. The saddlepoint methods of Daniels (1954) and
Lugannani and Rice (1980) have been applied (Davison, 1988) to ob-
tain tail probabilities for a real canonical parameter of a general-
ized linear model. The computational aspects have been simplified
(Fraser, Reid & Wong, 1991) by working directly with a conditional
likelihood (Cox & Reid, 1987); related theory (Fraser & Reid, 1989,
1992a,1992b) shows that the third order asymptotic properties are
preserved, and implementations indicate that accuracy is improved.
For a general model consider n independent variables, where a
component y; has the canonical exponential model with density

exp{y0; — c(0:)} f (i) (1)
but with canonical parameter §; = g(X;8) related by a link function
g(-) to a vector X; = (z1,...,2ip) of concomitant variables having

a regression-type parameter 8 = (f1,...,3,)". The link function de-
scribes how the composite effect X;8 of the concomitant variables
affects the canonical parameter 6; of the exponential model; note that
the definition of the link function, for convenience here, differs slightly
from that in McCullagh and Nelder (1989).

For the special case of a canonical link with §; = X8, the likeli-
hood simplifies to

(By) = a+yXB-) c(XiB), (2)

and has sufficient statistic y’X. For inference concerning (3, with
nuisance 8, = (Bis..., Bp—1)", the Cox and Reid (1987) adjusted
profile

LeBy) = 0By By) + 5 108 libe s, By (B0). B) | ()

gives a likelihood function appropriate to the interest parameter 3,
in the context of no information concerning the nuisance parameter
B(1) = (B1,...,0p—1)’. For notation, in the preceding expression,

B1)(Bp) is the maximum likelihood estimate of By for fixed f3,; the
first term is thus the profile likelihood; the second term contains the
observed information matrix j for the nuisance parameter ﬂ(l) again
with fixed 3,,
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This adjusted parameter can then be inverted by a procedure (Fraser,
Reid & Wong, 1991, Fraser 1991) to give the tail probability

p(By) = P(B, < BY; 5y) (4)

to third order accuracy (Fraser & Reid, 1989, 1991); this is an ex-
tension of the Lugannani & Rice (1980) formula to the more general
context with nuisance parameters. The computation by this route is
somewhat more direct than in Davison (1988).

For independent observations 1, . . ., ¥, with a non-canonical link
0; = g(X;B), there is no longer a sufficient statistic reduction to di-
mension p; in fact in general there is no reduction from the sample
dimension n. Barndorff-Nielsen’s (1983) formula for the distribution
of the maximum likelihood estimate

c(2m) P2 exp{€(B;y) — £(B; y)}7|"/?dB (5)

when renormalized provides O(n~=3/2) accuracy, but it is in fact a
conditional distribution and needs to be calculated conditionally given
an ancillary a(y); no general method of determining the appropriate
ancillary is available in the literature.

For the present generalized linear models, the method in Fraser
(1964) can be adapted to produce an approximate ancillary of first
or second order. In the resulting conditional model, the parameters
enter nonlinearly in general. The use then of a tangent exponential
model (Fraser, 1964, 1990) or the r* formula of Barndorff-Nielsen
(1991) lead to significance with second or third order accuracy for
real component parameters. An alternative route (Fraser & Reid,
1992b) based on Fraser (1990) and Cheah, Fraser & Reid (1991) leads
to corresponding significance for real or vector parameters.

For the generalized linear models with noncanonical link we de-
velop, as just discussed, the approximate ancillary and obtain signifi-
cance by the alternate route. A simple example is used for which exact
probabilities are available, thus allowing appropriate comparisons.

An example concerning lifetime of leukemia patients is discussed
in Section 2; the suggested generalized linear model has two param-
eters. In Sections 3 and 4 one of the parameters is assumed known
a priori and two different types of tangent exponential models are
developed and analyzed in the two sections. The general case with
nuisance parameter is discussed in Section 5.
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2. An example. As illustration we choose Example U from Cox and
Snell (1981). The response y is lifetime in weeks for leukemia patients
and the concomitant variable x is the logarithm of the initial white
blood cell count (Feigl & Zelen, 1965):

X y X y X y
3.36 65 4.00 121 4.54 22
2.88 156 4.23 4 5.00 1
3.63 100 3.73 39 5.00 1
3.41 134 3.8 143 4.72 3
3.78 16 3.97 56 5.00 65
4.02 108 4.51 26

The suggested model is

fi(y:) = exp{—wi0; +1n(6;)} (6)

on y; > 0 where

E(y) = 0" = exp{a+8(z; —T)} . (7)
This is a simple exponential model with link

0; = 9(XiB) = exp{—a—B(z; —7)}

= exp{—(1,z; — 7)(, B)'} ()

which is nonlinear in the canonical parameters. In Sections 3 and
4 we examine the regression parameter § with an assumed value for
. Then in Section 5 we again examine 3 but with « treated as a
nuisance parameter.

The example has special features that allow an exact analysis
for both o known and « as nuisance. For this let w; = log ¥;; then
w; —a — fB(x; —T) = t; has the extreme value distribution

exp{t — e’ }dt (9)

and the model is seen to be a location model. For some background
and general discussion, see Lawless (1982).

A natural and fundamental analysis for location and transfor-
mation models was initiated by Fisher (for example, 1956); some de-
velopments of this with reference to error variable models may be
found in Fraser (1968, 1979). For a regression model, the analysis
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uses the conditional distribution given the error residuals and within
the conditional model marginalizes to a pivotal variable for the inter-
est parameter; the computations can be presented succinctly in terms
of likelihood.

For the present model in the form preceding (9) we obtain the
conditional density for &, A3 in terms of likelihood,

f@ B, B) = cL’(a—a+a’ BB+ 03

where L°(a, 8) = L(a, 3; y°) is the observed (non-log) likelihood from
the data vector y°. The significance for 3 in the case that o = oy
is known is based on a further conditioning which here in fact corre-
sponds to the simple substitution a = ay:

B°

PA<Fio0f) = [ ellon.p—B+P)i
g (10)

= / CL(O[(), ’Y)d’Y
B

The significance for # with o unknown is obtained by marginalizing
over Q:

PH< P8 = /ﬁ / cL(a, y)dady (11)

where the norming constant and then probabilities can be obtained
in general by numerical integration.

3. Tangent model (at parameter value); real parameter. Con-
sider variables y1, ..., y, with the generalized linear model

explyig(Xif) — c{g(XiB)}Hh(y:) (12)

where X; and ( are real. The model in general is a curved (n,1)
exponential model.

For the hypothesis 8 = [y we need the null density for 8 = Sy
plus some model structure to obtain a test statistic. Standard first
order asymptotics would suggest the quantities

w(8) = (B-B)7?
(8 = SB)7 (13)
r(B) = sgn(B — B)[2{¢(B) — £(B)}]'/?
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based on the maximum likelihood estimate, the score

S(B) = (9/9p)L(B) ,

and the signed likelihood ratio r. Standard generalized linear model
analysis (McCullagh & Nelder, 1989) uses deviance which is equivalent
to the use of the likelihood ratio 7.

An alternative procedure can be based on approximating the
given model by its tangent at 3y, which has density

explyi Xig;(B — Po) — c{gi + Xigi(B — Bo) }h(ys) (14)

where g; = 9(X;00), 9; = 9'(X;0). This is an exponential model with
sufficient statistic Y y; X;g; and coincides to first derivative with the
given model at 3 = (p. The likelihood inversion procedure (Fraser,
Reid & Wong, 1991, Fraser, 1991) can then be applied to the likelihood
from the tangent model to give the significance function

pa(B) = P(B<B°P) (15)

to saddlepoint accuracy. It should be noted that the procedure needs
to be repeated for each value of (.

For the example in Section 2 with « taken pragmatically at its
maximum likelihood value

o~
e = 51.109 weeks ,

we obtain approximations to the significance function for 3: the first
order approximations p1(3), p2(0), p.-(8) and the third order approx-
imation p, () obtained from the tangent model. These are plotted in
Figure 1 together with the exact p(/3) as obtained from the numerical
integration described in Section 2.

The score and maximum likelihood curves are on either side of
the exact, the likelihood ratio is very close to the exact. From expe-
rience with the saddlepoint procedure we can find that p,(3) is often
accurate to 2, sometimes 3 significant figures. It differs slightly from
the exact in the right tail: that it differs from the location-model ex-
act can be attributed to its score based measure-of-departure. The
corresponding score test is the locally most powerful test (a marginal
test) and can be expected to differ from the location model exact test
(a conditional test).



4. Tangent model (at data value); real parameter. In order to
use Barndorff-Nielsen (1983) formula (5) for the maximum likelihood
estimate we need to determine an approximate ancillary. Following
Fraser (1964) we determine the local location relation for a typical
coordinate y;

—8FZ- (yi, 9)/89
OF;(yi;0)/0y

In the particular case of the example with an exponential life distri-
bution, we obtain

dy:0) = -, (17)

which is easily seen to come from the location model structure men-
tioned in Section 2.
For the generalized linear model (12) we have then that a change

df in 3 at B\O produces the change
9;X:dp

in 0 at #° and thus the change

d(y?,09)g! X;:dB = v;df (18)
in the ith coordinate y; at yY. For the ancillary direction at y® we
therefore use v = (v1,...,v,)". In the particular case of the exponen-

tial life example we have
o= A1) 1 = g (19)

The tangent exponential model (Fraser, 1988, 1990) that coin-
cides with the given conditional model determined at yY is

exp{zep + £°(8) }h(z) (20)
where £°(3) is the observed likelihood,
— Hpy)| 1)
Y = dV Y y©
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is its canonical parameter, and z is the canonical variable such that
zv coincides with dy in the direction v at y°.
For the exponential life example in Section 2 we have

LPp) = — Z exp{—ap — B(z; — T) }yd — nay

o = > exp{—ag — Blzi — T)}y) (z: — F) .
1
The left tail probability

nd) = <P = e +e{; -1} @)

obtained by applying the Lugannani & Rice (1980) formula to the
exponential model (20) at the data point z = 0 corresponding to y°.
This is asymptotically equivalent to the use of 7* in Barndorff-Nielsen
(1991), given the accuracy level of the ancillary.

The approximation py(6) for the example is also plotted in Figure
1. Its closeness to the exact (essentially superimposed) corresponds to
the effectiveness of the generalized Lugannani and Rice approximation
for location models (Fraser, 1990; DiCiccio, Field,& Fraser, 1990).

5. Tangent model (at data point); interest parameter with
nuisance parameter. Consider the generalized linear model (12)
with interest parameter ¢ and nuisance parameter \; for example we
could have

¢ = (/B'r—}—la"'aﬂp)l = B(2)a A= (ﬂla"'aﬁr)l = ﬁ(l) .

For the case of a vector interest parameter ¢ we can apply Skovgaard
(1988) or Cheah, Fraser & Reid (1991) to an adjusted density obtained
by the methods in Fraser & Reid (1992a,1992b). For present purposes
we restrict our attention to a real interest parameter and real nuisance
parameter: ¥ = (32, A = (31, and for convenience follow the pattern
for the exponential life example in Section 2 taking ¢ = 3, A = a.

A change do at @° produces by the method outlined in Section
4 the change

d(y,07) - g? - 1 da = ylda = v}da

(2
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in y; at y°; and the change dg at 3° produces the change

d(y?,09) - g? - (z; —T)dB = y)(v; —T)dB = vldp

in y; at y9. The resulting ancillary directions are v!, v2 at y°:

vi = (vi,...,v}), vi = (v3,...,02) .

The tangent exponential model (Fraser, 1988, 1990) that coin-
cides with the given conditional model determined at y° is

g(z1,20) = exp{p121 + paza + £°(a, B)}h(21, 20)

where £°(a, 3) is the observed likelihood

d
Y1 = Wé(a’n&)’) ‘yo

d

Y2 = Wf(aaﬁ;}’) ‘yo

are the canonical parameters, and (z1,22) is the canonical variable

such that z;v! + 29v? coincides with dy in the directions £(v?,v?).

For the exponential life case we have

Pla,B) = — Zexp{—a — B(z; —2)}y) — na
o1 = Y exp{—a—pz; —)}/y]
Py = Zexp{—a — B(z; — 7)Yy (z; — T) .

A significance function pg(8) for [ is obtained by averaging over the

conditional distribution of Xﬁ. The resulting significance function is
obtained from (23) with the standardized maximum likelihood quan-
tity g replaced by the adjusted version

R (?1 — p1)2p1 + (P2 — Pp2) 25,
Q@ =sgn(B—p)- {(221)2 + (zg2)2}1/2

32 %/00] @, )
|8¢/8aﬁ\ (a,ﬁ) |E7fyie_aﬁ_'8(wi ) | 1/2
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where g is the pseudo parameter @ evaluated at the constrained max-
imum likelihood estimate (&g, (), z% is the corresponding canonical
variable value

R %\t (4
4= #((2) o=} = () (5)

and (£9,£3) is the score vector for the observed likelihood function.

For the data in Section 2, we plot pp(3) which allows for the
nuisance parameter and also the exact p(8) which also allows for the
nuisance parameter: they are essentially superimposed. For compar-
ison with the results from Section 4 where the maximum likelihood
value is used for a we plot py(83) with o = @°; this provides a tighter
confidence function corresponding to treating the nuisance parameter
as known.
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