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SUMMARY

Two asymptotic models which have variable and parameter of the same dimen-
sion and which agree at a data point to first derivative, conditional on an approx-
imate ancillary, lead to the same p-values to third order for inferences concerning
scalar interest parameters. With some given model of interest one can then choose a
second model to best assist the calculations or best achieve certain inference objec-
tives. Exponential models are useful for obtaining accurate approximations, while
location models present possible parameter values in a direct measurement or loca-
tion manner. We derive the general construction of the location reparameterization
gives the natural parameter of the location model that coincides with a given model
at a data point. The derivation is in algorithmic form that is suitable for computer
algebra. This extends the third order existence result and provides the basis for
developing default priors for Bayesian analysis.
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Transformations.



1. INTRODUCTION

Consider a continuous statistical model f(y;6) with variable y and parameter ¢
both of dimension p and with asymptotic properties inherited from some antecedent
model whose dimension n becomes large. Let £(8;y) = log f(y; 0) — log f(y; 8) be
the log-likelihood function from a point y.

For a data point y° we develop in this paper a location reparameterization
B(0) that allows third order inference to be presented as if the original model was
location with canonical parameter (3(f). This is developed in Sections 4, 5 and
earlier sections provide the necessary background. The location reparameterization
is a natural parameterization for a flat prior for default or nonsubjective Bayesian
analysis.

Recent likelihood results show that for third order inference from a data point
y° we need to have available only the observed likelihood £(f) and its gradient ¢(f)

at the data point where

€0) = 0:") . 9(0) = 5 L053) o (1.1)

Thus any model that provides a first derivative approximation to the likelihood for
some given model near a data point y° will lead to the same inference results. We
refer to such a model that provides a first derivative likelihood approximation as a
tangent model to the given model at the data point 4°. For a recent summary of
the background methodology see Fraser, Reid and Wu(1999).

For the scalar case with p = 1 the asymptotic form of a model at a data point
y° was investigated (Fraser & Reid, 1993) by a Taylor expansion of log f(y; #) about
y° and the corresponding é(yo) = 69. The theory shows that third order inference

depends only on the observed likelihood

£(0) = log f(y°;0) — log f(y°;6°) (1.2)
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and the observed likelihood gradient

0(6) = - {108 £(016) ~ log 1 (5:0) }|

= Ly {L(0;9) — LB 9)}] o -

More specifically, it shows that £(0) and ¢(6) fully determine the third order model

v (1.3)

save for a fourth order Taylor coefficient, quadratic in variable and quadratic in
parameter. And more importantly, it shows that the p-value or probability left of
the data is independent of the quadratic-quadratic fourth order coefficient. These
results thus establish that the third-order p-value for testing any chosen parameter
value is dependent only on £(6) and ¢(6).

An exponential model with the given £(0) and ¢(f) was developed in Fraser &
Reid (1993), and related results were obtained in Cakmak et al (1995, 1998). The

model is third order and has the form
() = a7 @0 LU0} + ' (v =y 717 (1.4)

where j is the information for ¢ obtained from the observed likelihood £{6(¢)},
¢ =1+ 0(n"1) is constant to order O(n=3/2), and for discussion now p = 1 and
the bars on j are not needed. This extends Barndorff-Nielsen’s (1983) p* formula
in the sense that p* gives the density at a point y° with related £() while fz gives
the density expression for a general y as propagated in an exponential manner from
the given £(f) and () at 4° ; in structure fz can be viewed as a first derivative
extension of the p* formula at the given point. We can view ¢(f) as the canonical
parameter of the fitted exponential model at the data point °.

A location model with the given £(6) and ¢(f) was developed in Cakmak et al
(1995, 1998). The model as developed is third order and has the form

110 = G XPLHOG — y+ 4} (1.5)



where (3() is the location parameter and if p =1 is given as

0
0= [~ 20, o

where £y(0) = (0/06)£(0) is the score parameter and ¢(6) is the canonical exponen-

tial parameterization. Thus we view (3(f) as the canonical parameter of the fitted
location model at the data point 7°.

The exponential parameterization is important for approximate inference calcu-
lations with a data point y°; the location parameterization is important for inference
presentations from data y° (Fraser, Reid, Wu, 1998) and provides a basis for default
Bayesian priors.

Now consider the vector parameter case with general dimension p. Formula
(1.3) is valid for vector y and 0 and gives the canonical exponential parameteriza-
tion ¢(#) for the approximating exponential model at the data point y°; for some
inference results based on this see Fraser & Reid (1995). The corresponding or
tangent exponential model is given by (1.4).

For the vector case an approximating location model would have the form (1.5)
and would allow the presentation of third order inference results as if the original
model were location with canonical parameter 3(f). The existence of a third order
expansion for 3(f) was established in Cakmak et al (1994). In this paper we develop
a Taylor series expansion for 3(6) about 0° = é(yo); this is obtained in a form
suitable for computer algebra and is presented in Sections 4 and 5. The usefulness

of this for Bayesian default or nonsubjective priors will be discussed elsewhere.

2. BACKGROUND: THE SCALAR CASE

Consider a statistical model f(y;#) with scalar variable and parameter and

asymptotic properties as some external parameter n becomes large: we assume
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that log f(y; 0) is O(n) and that the maximum likelihood value 4 is unique and is
O,(n~1/2) about 6 as discussed for example in DiCiccio, Field & Fraser (1990).
Fraser & Reid (1993) examined the two dimensional Taylor expansion of
£(0;y) = log f(y;0) about (6(y°),y°) where y° is an arbitrary point, typically an
observed data point and é(yo) = Y is the corresponding maximum likelihood value.
Further results on this and an expansion about (6, §(0y)) were examined by Cak-
mak et al (1995, 1998) where §(fp) is the maximum density value for some chosen
parameter value 6. We will be concerned with the first type of expansion here and
let a;; designate the Taylor coefficient for the ¢th derivative with respect to 6 and

the jth derivative with respect to y taken at the expansion point:
log f(y; 0) = Sa;(6 — 0°)'(y — y°)? /i!5! (2.1)

The log density is examined in a moderate deviations range about the expansion

point by using standardized coordinates 9~, Y,
0=0-0°"", §=@u—y")ki*? (2.2)

where j = —£gg(6°, y°) is the observed information, k = £y, (0% y°) is the observed
gradient of the score, and £(6; y) here is taken to be the log density log f(y; ), with
subscripts denoting differentation. The asymptotic properties show that the new
coefficients @;; are O(1) with i+j = 2, are O(n~/2) with i+j = 3, and are O(n™?)
with 4 + j = 4; we neglect terms of order O(n~3/2) and higher. For simplicity of
notation we choose to write these modified variables and coefficients as just 6, v,
and a;;.

A reexpression of the original 6 and y has the following pattern in terms of the

standardized variables

0 =0+b10%/20n2 +0,0° /60, §=y+ c1y?/2n? + cpy° /60 (2.3)



where the initial coefficients are unity as a consequence of (2.2). The reexpressions
can be chosen to give special structure to the reexpressed model. For exponen-
tial model and for location model structure appropriate transformations give the

following two matrix arrays of Taylor coefficients a;;:

a+(3as—5a3—12c)/24n —az/2v/n —{14+(as—2a2—5c)/2n} asz/v/n (as—3ai—6¢c)/n

0 1 0 0 —
-1 0 c/n — — (24)
_as/\/ﬁ 0 — — —
—ay/n — — — —
a+(3as—5a3—12¢)/24n 0 —{14+(-5¢)/2n} as/v/n (—as—6c)/n
0 1 —as/\/n as/n -
-1 as/v/n (—as+c)/n — — (25)
—asz/vn as/n - - -
—as/n _ _ _ _

where a = —(1/2) log 2m. As the reexpressions (2.3) are different for the two model
types we have that the structure parameters agz, a4, and ¢ are in general different
in (2.4) and (2.5); in the first case c records departure from exponential form and
in the second case it records departure from location form. Also we have that in
each case the first row is determined by the remaining rows, an important property
underlying the development of the approximations (1.4) and (1.5); in other words a
density is available from a likelihood inversion, a rather important extension of the
more familiar Fourier or saddlepoint inversion.

The reparameterization that gives the exponential approximation (1.4) is avail-
able from the second column of (2.4) as the first derivative of likelihood with respect
to y:

o0) = (3-t0:0) ~ 5-t0:2) ) |,
this agrees with the expression in (1.1) and the second term here is to accommodate
the present definition of £(f;y) which does not include the standardization (1.2) at

the maximum likelihood value.



The reparameterization that gives the location approximation (1.5) is recorded

as (1.6); for details see Cakmak et al, (1995, 1998).

3. BACKGROUND: MULTIVARIATE CASE

Consider a statistical model f(y; 6) with p-dimensional variable and parameter,
and asymptotic properties as described in Section 2. We consider a Taylor expansion
of £(0;y) = log f(y;0) about (6°,4°) where #° = A(y°) is the maximum likelihood
value corresponding to a data value y° of interest. This gives

U0;y) = a+a'(y; — ;)
+ aig (8 = 09)(0; — 09)/21+ al (65 — 09) s — y3) + -+
k _

where tensor type summation is assumed over {1,2,...,p} and for example a;; =

(3.1)

(0/06,)(0/00;)(0/0yr)L(0; y)|(90,y0). Note the change of notation from the preced-
ing section where ¢ gave the order of a derivative while now it designates a coordinate

of 6 or y. The coefficients can be recorded as a general matrix type array
o b aii giik.. \
0 az- aijj :

ag by : ; (3.2)

aish . .

we follow Cakmak et al (1994) for general notation.

The log density is examined in a moderate deviations region by using location-

scale standardized coordinates
0; = cij(0; — 09) . i =dij(y; —v5) (3.3)

chosen so that the new second order coefficients in columns 0 and 1 have Kroneker

delta or identity matrix form,
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It follows that the new coefficients with three indices are O(n~/2), with four indices
are O(n™1), and in Section 2; here we incorporate this dependence within the

coefficients. The resulting log-likelihood ratio function at y = 0 is
£0) = —%(5@9193‘ + a;50:0;0k/6 + aire0:0;0100/24 + . .. (3.5)
and the gradient of this log-likelihood ratio at y = 0 has a-th coordinate
£9(0) = 6705 + a53,00k/2 + aJ0;0k00/6 + . . . . (3.6)

In these expressions we haveagain omitted the tildas for ease of notation. Also the

expressions (3.5) and (3.6) are based on log-likelihood ratio

£(0;y) = log f(y;0) — log £ (y; ) (3.7)

as we are centrally concerned with how likelihood itself determines an underlying
density and model; in particular there is no constant term in the expression (3.6)
and this is related to have some special choice of mode of expression for the variable
involved.

Nonlinear reexpressions of the initial parameter and of the initial variable have
the form indicated by (2.3) which presented in terms of the location scale standard-
ized variables. Reexpressions can then in turn be chosen to give for example an
approximating exponential model analogous to (2.4). We do not develop here the
coefficients of the corresponding Taylor array but do note that the related expo-
nential model which has the c-type array equal to zero can be written generally as
(1.4) in terms of the original variables; the canonical parameter is given by (1.3)
and the observed log-likelihood by (1.2).

Our primary interest is the location model approximation analogous to (2.5)
which then has the form (1.5). In particular we seek the location reparameterization

B(0) that gives the vector generalization of (1.6).
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For this we follow Cakmak et al (1994) and examine to what degree the statis-
tical model departs from being of location model form. In particular, if the model
as it stands is location, £(0;y) = log f(y — 6), then the first derivative property
at y = 0 is £4(6;0) + £,,(0;0) = 0. Accordingly for a general model we define a

nonlocation measure at y° by

d(0) = {d'(9),...,d"(0)} (3.8)

where di(0) = £¢(0) + £;(6) and

0
0y;

0

£(9;9)|yo . 4i(0) = a—eif(@;y)‘yo : (3.9)

0(0) =

It follows that likelihood ratio describes a location model if and only if d(f) = 0 for

the standardized model satisfying (3.4) from (3.3).

4. LOCATION REPARAMETERIZATION

Consider further the asymptotic model f(y;0) with p dimensional parame-
ter and p dimensional variable; also we continue with the redefinition of £(6;y) =
log f(y;0)—log f(y; é) as log-likelihood ratio and use the location scale standardized
version as obtained from the chosen transformations (3.3) with (3.4) .

We seek a reparameterization 3(6) for the statistical model f(y;6) so that the
model has location form with respect to 3(0) to first derivative at a data point
y°. For this in Section 3 we defined a nonlocation measure d(f) based on the first
derivative structure of the model at the point °.

If the model is location at y = y® = 0 then d(6) in (3.8) is equal to zero.
More generally we seek a transformation typically nonlinear of 6 to say 6 = B(0)
that changes a nonnull d(f) for the initial model to a null d(€) when calculated

for the model reexpressed in terms of the new 0. For this we examine the form of
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the nonlocation measure as expanded about the centered maximum likelihood value

6° = 0. For « in {1,...,p} we have the a-th score and a-th gradient

[oJ4

Ka(ﬂ) = % ‘yzO = _5aj0j + aajkejﬁkﬂ + aajk¢9j0k93/6 + ... (4.1)
ey ot a a a

where we have incorporated the usual n=%2, n=1, ... into the coefficients. It follows

that the nonlocation measure has a-th coordinate
d* = (aajk + a5;)0i0k/2 + (aajre + a5ie)050k00/6 + . ... ]
= d%,0,0/2 + d%,0;0400/6 + . .. 43
where say d7j, = aajk + ) is a sum of a first column element and a second column

element one row higher.

Now first we consider a quadratic reparameterization

0; = éz + b;kgjék/2 (4.4)

that can make the recalculated quadratic discrepancy dg = 0.

For this we modify the methods in Cakmak et al to obtain a pattern that can
be generalized to eliminate the higher order terms in (4.3).

If the initial parameter 6 is replaced by the quadratic reexpression (4.4), then
the new aq ;i is

a k
(lajk - b]k — 2bag

and the new ag‘k is

with the result that the new d;?‘k is

o — 2b7 . (4.5)
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We show that the bgk can be chosen so that the new quadratic discrepancy is zero.
To show that the equations (4.5) are not quite as trivial as they might first
appear in tensor notation we record representatives. If {a,j,k} = {1,1,1} we
obtain
d%l = 2b%1

which gives bl; = d},/2 and then more generally gives

. 1 .
bu 2du ( 6)

If {a,j,k} = {1,1,2} we obtain
diy = by + b3
d%l = 2b%2

which gives b}, = d3,/2 and b3, = di, — d?,/2, and then more generally gives
i qJ VR J
bij = di/2 by = di; —dy /2. (4.7)

If {o, 5, k} = {1, 2,3} we obtain
dyz = biz +biy
diz = by + b7,
d§2 = bés + 5%3

which can be solved giving more generally for different ¢, j, k
i LYook
ik = 5 (dij, + dij — dji) - (4.8)

Note reassuringly here that (4.8) also reproduces (4.6) and (4.7) by letting various
indexes be equal. It is of interest as background for the higher order terms to record

the Jacobian determinants for the successive groups of linear equations

:—2 :2.

bl

1 1

— = O
—_ O
O =
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We have shown that a quadratic representation from 6 to a candidate 3(0) = 6
can eliminate the quadratic terms in the nonlocation measure. Now suppose that
an (m — 1)st order reparameterization has eliminated the (m — 1)st order terms
with preceding terms already eliminated. Then for a given parameterization 6 we

have that the discrepancies

d;?tle = 07 R d?l"‘jm71 =0 (49)
and we seek an mth order reparameterization
Oo = 0o + 2.5 0; -0, /m (4.10)

so that the new d;"l are equal to zero. As a preliminary we note that the re-

Jm
expression (5.2) has no effect on lower order discrepancies (5.1). The Appendix A
outlines the argument that shows linear equations can be solved to give the b*’s in
terms of the d®. Of course this shows the existence of the location reparameteri-
zation but it also gives a procedure for the computer algebra development of the
power series for 3(0) in terms of . Such a power series would be the multiparameter

analog of an expansion for the scalar 3(f) recorded in (1.6).

Appendix A. We now show that the coefficients b7, , in the expansion

Jm

(5.2) for 0 can be solved for so that the mth order discrepancies d5; , = are equal

—Gm

to zero.
If we substitute (4.10) in (3.5) we find that the new aqj,...5,, is

Jm

a
Qojy-wjm = Ofy o — TG G

and the new a%® , is
J1Im
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with the result that the new m-th order discrepancies are

ds .., —mblm .. (A.1)

Im Qaji-JIm

Can we choose the b?‘l,__ so that these new m-th order discrepancies are all zero?

Jm
The discrepancies (A.1) appears as the coefficient of 8;, ---, /m! and thus

must be symmetrized as in the quadratic case following (4.5). For example, the

coefficient of 6’~’1” /m! for the a-th coordinate gives immediately the equation
?...1 = mb%...la
but the coefficient of 67 ~20503/(m — 2)! gives the equation

o123 = (M = 2)bi. 1934 + 1. 130 + b3...124

where each item has m subscripts. More generally if j; appears m; times, ..., j,
appears m, times with ¥m; = m and j; < --- < j, then the symmetrized form of
(A.1) is
— J Jr
dj .o = Ml ot by (4.2)

where each term has m subscripts and a j; as superscript requires one less j; as
subscript with the missing j; replaced by a.

Now consider the full set of integers that appear in an (A.2) type of equation
and let j; appear m; times, ..., j, appear m, times where j; < --- < j,. and
Ym; = m + 1. We consider the r different equations that use this collection of

integers for superscript and subscripts. Specifically we take a = j; in the d7,

.77'
equation, ..., @ = j, in the d7, . ; equation; the Jacobian of the r equations in the
r different b’s is

mi — 1 mao cee My my
mi me — 1 My_1 m,
J = : =(-1)""'m. (A.3)
mq 'y my._1—1 m,
mq mg mMy_1 m, — 1
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Accordingly we can solve for the b’s:

i J;
o= A4
g = (A4)

Jl"'jr -

where J; is the determinant J but with the ith column replaced by the vector of
d’s that are recorded in sequence above. For this we note that the total number
of j;’s is m; and thus that the subscript array on the left side is different for each
Ji as superscript. With various values of r = 1,...,m 4+ 1 and various integers
J1 < --- < jp with various frequencies mq, ..., m, with ¥m; = m + 1 we determine
the mth order parameter adjustment to give the mth order location property.
Iteration on m then determines the power series representation for the location

parameter (3(6) in terms of the original parameter 6.
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