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Recent methods of asymptotic inference including ancillarity and subsequent marginalization or con-
ditioning lead almost universally to the very simple case of a real variable and a real parameter model,
to a distribution on the real line with a single parameter. This paper develops some basic asymptotic
theory for such a simple statistical model. For this special case we determine canonical versions of the
best approximation at a data point, by an exponential type or location type model. We also examine
the standard parameterization-invariant test quantities for these models and determine the connections
among them. The results lead to some simple proofs for key inference formulas and provide the basis
for the multi-parameter, many variable contexts. As part of this we describe a step by step reduction
procedure for reducing an initial model to the canonical exponential type or location type model; The
procedure is amenable to computer analysis. The canonical model in each case has just three parameters,
one of which identifies the location or exponential type.
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1. Introduction

For a distribution on the real line with a real parameter we consider asymptotic properties as a sample
size ingredient n becomes large: the distribution is approaching normality but typically has some cubic
and quartic effects in the exponent when examined to third order accuracy O(n~%). The inference results
that follow from this provide central structure for multiparameter testing with nuisance parameters in the
context of an increasing number n of coordinates. Some indications of these general results are recorded
in the discussion in Section 6.

Exponential models and transformation models provide basic patterns for statistical inference: For the
first, marginalization to the sufficient statistic, and then conditional inference for a canonical component
interest parameter; For the second, conditionalization to the parameter generated orbit and marginalization
then for a component canonical interest parameter. For some general discussion, see Lehmann (1983,
1986), Fraser (1993). These patterns have their analogues in general third order asymptotic analyses; see
the discussion in Fraser & Reid (1993a).

In this paper we consider the asymptotic approximation of the real variable real parameter model by
an exponential model and by a location model. The approximations are relative to a particular data point,
in applications an observed value, and involve reexpression of both the variable and the parameter. In a
canonical form, an exponential model is given by exp{yd — ¢(0)}f(y) and a location model is given by
f(y — 0) . The approximations have the canonical form plus a correction factor of order O(n=!). These
canonical approximations have just 3 parameters and their simplicity provides access to many general
methods of statistical inference.

Sections 2 and 3 describe the exponential type approximation and determine the connections among
the common parameterization invariant test quantities. Sections 4 and 5 describe the location type ap-
proximation and determine the connections among the common test quantities. Section 6 contains some
general discussion and an indication of use of the approximations more generally.

For a real variable and real parameter consider a relative density function f,(y;#) that depends on
a parameter 1, often sample size, and is obtained by marginalization or conditioning from some initial
model, as with sufficiency reduction and the Central Limit Theorem or with transformation conditioning
of say a location model (Fraser & McDunnough, 1984). We assume that for each 6, y is O,(n~'/2) about
the maximum density value §(0) and that £(6;y) = log f(y;6) with either argument fixed is O(n) and
has a unique maximum. For some background on these asymptotic assumptions, see DiCiccio, Field and
Fraser (1990). For the exponential approximation (Section 2) and the location approximation (Section 4)

we use slightly different notations; each has some advantages.

2. Exponential type asymptotic model

We consider the real variable real parameter asymptotic model just described and develop an expo-
nential type approximation to it that centers on a specific data point yo, which typically would be an

observed value. The hope is to better approximate the observed significance function p(8) = P(y < yo;0)



by resorting to the exponential model rather than the normal typically used in first order asymptotics.
Our method is to expand the log-density £(6;y) = > a;;(8 —6o)'(y — yo)?/ilj! in a Taylor series
expansion in both parameter and variable about some suitably chosen point (6p,10) and to record the

matrix array

Goo Go1 Qo2 Go3 Qo4
10 a1 Gi12 ai13 Qai4
G20 G21 Q22 Ga23 0424
G3zp G31 G32 Aaz3z Aasq
G40 G41 QG422 G43 Q44

of coefficients
Y
55 = i 5 D) [y - Q0
We will use the maximum density point (6o,y0) = (6o, §(60)) for some 6y of interest. Although (é(yg),yo)
has perhaps more theoretical appeal, the first has certain advantages. Throughout we use asymptotic
methods freely following DiCiccio, Field, Fraser (1990); see also Fraser and Reid (1990). In particular,
omitted errors in each step are O(n~=%).

At each step we will make a change of parameter and variable from (,y) with coefficients (a;;)
to new parameter and variable (¢,z) with coeflicients (A4;;). The transformation will be recorded, but
the new parameter and variable will again be designated by (#,y) with coefficients (a;;). This avoids
successive new notation but must be treated algorithmically to determine say the compound transforma-
tion in an application: the components are simple compared with any attempt to record the compound
transformation.

Our objective is to transform so as to approximate as closely as possible to an exponential model;
an exponential model in a suitably standardized form (Fraser & Reid, 1993a) can be pesented in terms of
a Taylor series expansion of the log-density function as described above; the cefliicients a;; in terms of

parameter and variable are given by the matrix

a—(3as+5a2)/24n 0 -1 as/n'’? as/n
—ag/2n'/? 1 0 0 —
—{1+ (ag +2d3)/2n} 0 0 - - (2)
—az/nt/? 0 - - -
—(aq + 3a3)/n - - - -
where a = —(1/2)log(2m) and a3 and a4 represent free parameters describing cubic and quartic ef-

fects modifying the first order normality of the 6y density. For this note that the rows correspond to
1,6,62/2,... and the columns to 1,y,y?/2,...: also that omitted elements are O(n~3/?) and thus sup-
pressed.

First we center and standardize the variable with respect to its second derivative at the maximum for
the 6 distribution: = (—ag2)~*/?(y —yo) . And we standardize 6 to get a unit cross Hessian between

—1/2

the new parameter and variable ¢ = (—ag2) a11(0 — 6p) . The resulting coefficient array has

Ago = ago — (1/2)log(—aez) , Aij = (—a02)"Y™2arja;; , i+j>0



with Az'j =

Goo
a10
a20
aso
G40

ready for the next step; missing elements are O(n~2).

0
1
a21
asy

-1
a12
a22

ag3
a13

(n=3/2) for i+ j >4, and in terms of lower case letters takes the form

ao4

Second, we change the variable so that the new ai2 and a3 are zero, as with the exponential

model (1): z =

Y+ any?/2 + ai39°/6 5 ¢

0 .

The new coeflicients are obtained by substituting

y =1z — (1/2)a1az? — (1/6)(a13 — 3al;)z?®, collecting terms, and calculating the Jacobian. We obtain

Ao = —a1z, App = —(1+ a3 —2al,) , Aoz = agz +3a12

2
Aos = aps +4a13 — 15a7, — 6agzaiz , Az = aze — aziai2

with other coefficients unchanged. The new array in terms of lower case letters is

Goo
aio
G20
aso
G40

with ag; = O(n~'/?) and agy = =1+ O(n~

ao1
1

as1

asy

1).

o2

0

a22

ao3
0

ao4

- (4)

Third, we again recenter the variable so that the new null density has maximum at zero: * = y—ao1

¢ = 6. The new coefficients are obtained by substituting y = = + a¢1 and using ag; = O(n~'/?):
Ago = ago+a3; /2, Ao = 0, Aga = a2 + agzaor ,
Ao = ao+ao1, A2 = az +a2ao ,

with other coefficients unchanged. The reexpressed array in terms of lower case letter is

Qoo
ai0
a20
aszo
G40

0
1

a21
asz1

02
0

a22

ag3
0

o4

- |- (5)

Fourth, we redefine the parameter so that the y column gets zeros except in the 6 position: z = vy,

@ = 0+ a26%/2+ a310°/6. The new coefficients are obtained by substituting 6 = ¢ — a219?/2 — (a3z1 —

3a3,)¢°/6:

AOO = Qoo , AlO = aio0 , A20 = G20 — aioedz1 , A21 =07

Ago = agg + 3021 5 A31 =0 5 A40 = ay49 + 4a31 — 15&%1 - 6(130(121

with other coefficients unchanged. The reexpressed array has the form

Qoo
a10
a20
aso
G40

0

SO =

02
0

a22

ao3
0

o4

- |- (6)



Fifth, we rescale the variable so that the maximum null density curvature is unity: = = (—ag2)/?y,

¢ = (—ag2)~/?0. The new coefficients are mostly unchanged since ags = —1+ O(n~1):
Aoo = ago — (1/2)log(—apz2) , ap2 = —1, Az = az(—ao2)

with other coefficients unchanged; the Ao can be simplified by using Ag2 = —1+0O(n~!) . The reexpressed

array is

agpo 0 -1 ap3 Qo4 apo 0 -1 as /’I’Ll/2 a4 /’I’L

aio 1 0 0 — aio 1 0 0 —

ax 0 axp — — |=]ao 0 c¢/n - - |; (7
ap 0 - - - ap 0 - - -

aso — - - - as0 — - - -

the alternate expression is convenient for determining relationship among the coefficients.

The preceding is the canonical exponential model (2), say g(y;0) if ¢=0. If we introduce a nonzero
¢ term cy?0?/4n into the exponent we obtain the density expansion g(y;6)(1 + cy?6%/4n) . To calculate
the norming constant for this we use the fact that E(y?) = 62 + 1, as the density g(y;#) is normal (#;1)

to the order O(n~='/?) required. It follows that (7) can be reexpressed as

a— (3a4 + 5a3)/24n 0 —1 az/n'’? ay4/n

—az/2n'/? 1 0 0 -
—{1+4(as +2a3+c¢)/2n} 0 ¢/n - - ; (8)
—asz/n 0o - - -

—(aq + 3a2 + 6¢)/n - - - -
the constant term is thus expressed as a function of the pseudo cumulants a3, a4 and the nonexponential
characteristic ¢. This shows that an arbitrary model with an asymptotic expansion of the form preceding
(1) can be reexpressed to have its expansion coincide with that of a standard exponential model, with
the addition of a single quadratic-quadratic term in 6?y?. We call (8) the canonical exponential type

asymptotic model.

3. Test quantities and the exponential approximation

For asymptotic contexts the likelihood ratio is a familiar test quantity. Alternatives are obtained
from the score or maximum likelihood departure by standardizing with respect to observed or expected
information. We examine the connections among these for the canonical exponential type asymptotic
model, but restrict our attention to those that are parameterization invariant.

For testing the null parameter value 8 = 6y = 0 with the model (8), the score variable S(0;y) is easily

calculated while the maximum likelihood estimate requires the solution of the score equation S(6;y) =0:

B ag

s = S(0;y) = %e(eay) |9:0 = Y- 2n1/2 ©)
~ as a4+2a§+0 as o aq4 + 3c 3
= Toun ( - 2n ) oY T Ten U 1o

For the score, a parameterization invariant statistic is obtained by standardizing with respect to

expected information
. 0?2 ay + 20%
i(0) = E{——aezf(G;y);H} |9:0 =1+ o



giving the following standardized statistic

_ L as + 2a3
z = 2(0;y) —3(1 ym ) (11)
For the likelihood ratio test of 8 = 6y = 0 we work with the signed square root version
r=r(0;y) = sgn(® —0) - {2(£(B;y) — £(09))}/?
(12)

_ 8(1_ a4+2a§+0) L8 o 3a4+a§S3
4n 6nl/2 2n ’
where s is the score variable (9). This statistic is parameterization invariant.
The maximum likelihood estimate does not lead easily to a parameterization invariant quantity. Fol-
lowing Fraser (1988, 1990) we calculate the canonical parameter of the exponential model approximation

at the data point y ; this data dependent parameter

p(@) = %K(G;y) = 0+ 6%yc/2n
is based on the sample space derivative of the log likelihood function. The notion of a data dependent
parameter seems quite contrived or contradictory but it can be viewed as a device that is very fruitful in
determining accurate significance levels at the data point in question (Fraser, 1990; Fraser & Reid, 1993).

For testing # = 0 we examine the departure

0@ — p(0) = 8+8yc/2n

( a4+2a3+C)_ a3 o 04 3
2nt/2 6n

and then standardize it with respect to the observed information 3 for ¢ which can be obtained from the

observed information for 6

-~ as a4+a§+c a4+2a§+50 9
=1
J +n1/2y 2n + 2n v
~ as as +2a3 +c 9
j = 1+n1/2s+ o (1+s%).

The resulting maximum likelihood departure using observed information is

2a2 2 3a2+6
q = s(l—a4+ a3+0)+ a4 + 3a3 + cs3‘

1
4n 24n (13)

We now have three parameterization invariant test statistics: z in (11) based on the score; r in
(12) based on the likelihood ratio; and ¢ in (13) based on the maximum likelihood estimate for a locally
defined parameter. Each is normal (0,1) to order O(n~'/2); thus ®(z), ®(r), and ®(q) give first order
significance for testing 6 = 0.

The location analysis in DiCiccio, Field, & Fraser (1990) or the exponential analysis in Fraser & Reid

(1993) shows that the mean and variance corrected 7,

B _ as 9a4 + 13a2 + 18¢
R=(r—E@)/sD@r) = (r+ ) (1+ i)

as 9a4 + 11a3 a3z o5 3as+ ai
(y B 3n1/2) (1 B 2n ) 6nt/z” o0 Y

(14)




is the unique monotone transform of y that is normal (0,1). Barndorfl-Nielsen (1991) suggests the
quantity

™ =r+7r'n (%) (15)

as anormal (0,1) test quantity. Substitution of the expressions (12), (13) shows that r* is equivalent to
the mean and variance corrected likelihood ratio statistic R to order O(n~3/2). The parameterization
invariant version (Fraser, 1990; Fraser & Reid, 1993) of the Lugannani and Rice (1980) tail probabilities
formula gives the significance function (Fraser, 1991),

p0) =0 <#50) = o) +o{; -} (16)

with accuracy O(n=3/2); a normal (0,1) type test quantity statistic can be obtained as # = ®~1{p(d)} .
These quantities are equal, R = r = 7, to accuracy O(n*%) but can differ radically in application; for
some numerical comparisons see Fraser (1990), Barndorff-Nielsen (1991).

We now record the connections among z, ¢, r, R to accuracy O(n_%) for the canonical exponential

type asymptotic model (8); these were derived by detailed algebra with computer verification.

c as 5 3aq+5d} ,
- (1 _)
o ( +4n T+6n1/2r + 72n 4
c 2a4 + 3a2 + 6¢
= (1 _) S e B
( + 4n 1 24n q
as 9a4 + 17a2 as _, 3a4+5a3 ,
- - B L (1_ ) 244 T 003
6nl/2 ( 2n R 6n1/2R + 2n R
_ as 5 9as +14a3 + 18¢ 4
9= Tt ean” 72n "
c 2a4 + 3a3 + 6¢ 4
- (1- _) 204 T 903 T bC
( 4n Zt 24n z
as 9a4 + 17a3 + 18¢ as o  9as+14a3 +18c
- - B (1 )
6nl/2 +( 72n R 6n1/2R + 2n R
c as o 3as+ai .
- (1 _) _ _
’ ( an)® " eniz”® o0 C
_ a3 5 9a4+10a3 +18¢ ,
— 17 gni2? 72n e
_ a3 ( _9a4+13a§+ISC)R
T 6nl/2 72n
as 9a4 + 13a3 + 18¢
N )
R = gur +( + 2n r
as 9ay + 13a3 az o a4+ a’ 3
- B (1 ) _ _
e e i ek
9a4 + 13a2 + 18 9a4 + 10a2 + 18
_ a132+(1+ a4 as C)q_ a132q2_ a4 as C(]3.
6nt/ 72n 6nt/ 72n

For computation these are recorded in decreasing ease of computation but typically increasing accu-
racy. The formulas provide the basis for examining performance characteristics of the statistics and are
expressed in terms of the standardized pseudo cumulants of the null distribution and the nonexponential

characteristic c.



4. Location type asymptotic model

For the real variable real parameter asymptotic model in Section 1 we now develop a location type
approximation that centers on a specific data point g, typically an observed value in applications. The
intention is to examine the patterns for location approximations with more general contexts in mind.

We follow the pattern in Section 2 and work from the Taylor Series expansion about a point (g, yo)
with yo = §(fo) for some 6y of interest; we record the matrix of Taylor Series coefficients a;;. At
each stage we will make a change of parameter and variable from (6,y) with coefficients (a;;) to new
parameter and variable (¢,z) with coefficients (A;;). We record transformation but then designate the
new parameter and variable again as (6,y) with coefficients (a;;) . The objective is to transform towards

a location model f(y —#) which has (Fraser & Reid, 1993) the coefficient array

a— (3aq + 5a3)/24n 0 -1 az/n'/? aq/n
0 1 —az/n'/?  —ay/n -
-1 az/n'’?  ayg/n - - (17)
—ag/n'/? —ag/n - - -
as/n - - - -

where a = —(1/2) log(2~) .
First we center and standardize the variable with respect to its second derivative at the maximum
Yo = (fy) for the 6y distribution: 2 = (—ag2)'/2(y — o). Also we standardize 6 to get a unit cross

—-1/2

Hessian between the new parameter and variable: ¢ = (—ag2) a11(60 — 6p) . The resulting coefficient

array has
1 . .
Aoo = a0 - (5) log(—ao2) , Aij = (_002)_(1_1)/2‘11116”1'

with A;; = O(n=U+9/2+1) for i+ j > 2 and the new coefficient array takes the form

aopo 0 -1 a03/n1/2 CL04/TL
aio 1 ar2/n'?  aiz/n —
aso (121/”1/2 a22/n — — (18)
a30/n1/2 a31/n i - -
aso/n - = - =

where missing elements are O(n~3/2?) and the asymptotic dependence on n has been made explicit.

Second, we change the variable so that the terms aja/n'/?, aj3/n are the negatives of ags3/n'/?,
aps/n as with the location model. We use = y 4 boy?/2n'/? + bsy®/6n and ¢ = 6, but need
to solve for y = x — bax?/2n — (bs — 3b3)x3/6n to substitute. The choice by = —(ap3 + a12)/2,
bs = ag3aia/2 +aly/2— a13/3 — aps/3 produces new coefficients

A01 = (a03 =+ 012)/2n1/2 s A02 = — (]_ — 0/33/271 - (103(112/271 - (113/3’I’L - Cl()4/3ﬂ) )
A03 = —A12 = a03/2 — 3042/2 5 A04 = —A13 = —0,04/3 — 30(2]3/4 — 5a03a12/2 — 7a32/4 — 4a13/3

Age = agy + ag3az1/2 + ajzas; /2

with other coefficients unchanged. The new array again specified in terms of lower case letters is

Qoo 6101/711/2 ag2 a3/nl/2 as/n
a10 1 —az/n'/?  —ay/n -
a0 as /n'/? axn/n - - . (19)

ago/nl/z a31/n - - -
a40/n - - - -



Third, we recenter the variable so that the new null density has maximum at zero ¢ = y —

ao1/ n'/? | ¢ = 6. The new coefficients are
2
Ago = ago +ap/2n, Apy = 0, A2 = ap2 + azaopi/n,
1/2
A = a10+a01/n/ , A1 = 1—asapi/n, A = a + a2nae/n

with other coefficients unchanged. The new array then has the form

aoo 0 402 az/n'’? ay4/n
a10 a1 —az/n'/?  —ay/n -
a0 a1 /n1/2 a22/n - - . (20)
aso/n/?  asi/n - - -
aso/n - - - -

Fourth, we redefine the parameter so that the y column attains the form appropriate to the location
model: 2 = y, ¢ = a10+d=0?/2n"/?+d36°/6n where dy = as1 —az, d3 = 3a3—3asiaz+az; +ay.

The new coefficients are
A = 1, Az = a20/a%1 +a10a3/n1/2 —010021/711/2 , Ao = a3 ;
A = ass +asiaz — a3 , Asg = aso + 3aspaz — 3aseaz1 , Az1 = —ay ,
A40 = a40 + 15&20&%1 + 3&200/% - 18&20&21&3 - 4a20a31 - 4(120(14 + 6&30&3 - 6&30&21

with other coefficients unchanged. The re-expressed array has the form

aopo 0 ap2 as /TLI/2 (14/”
aio 1 —ag/nl/2 —ag/n —
a0 Cl3/’I’L1/2 azg/n — — . (21)
aso/n'/?  —as/n - - -
aso/n - - - -
Fifth, we rescale so that the maximum null density curvature is unity: = = (—ag2)%y, ¢ =
(—ag2)~'/%6 . The new coefficients are mostly unchanged as agz = —1 4+ O(n™")
1
Ago = ago — 5108;(—6102) , Ao = -1,

Ay = ago(—an) , Asa/n = ax/n = (as+c)/n

where we use ¢ = ag2 — a4 . The new array is

aoo 0 -1 ag/nl/2 as/n
aio 1 —a3/n1/2 —as/n —
aso az/n'’?  (ay+c)/n - - : (22)
azo/n*’?  —ag/n - - -
a40/n — — — —

If ¢ =0, the preceding becomes the canonical location model, say g(y;8) , given by (17). Accordingly,
the expansion for log f(y;8) + (%) log(2m) can be written as

—(3as + 5a3)/24n 0 -1 az/n'’? a4/n
0 1 —az/n'/?  —ay/n -
—(1+¢/2n) az/n'/? (as+c)/n — - (23)
—az/n'/? —as/n - - -

(ag — 6¢)/n — - — -



the effect of the quadratic-quadratic ¢ term cy26?/4n with the location model g(y;#) appears as
9(y;0)(1 + cy?6? /4n) and requires the norming constant (1 — cf?/4n — cf*/4n), as in Section 2.

We will treat (23) as the canonical location-type asymptotic model. This shows that an arbitrary
model with an asymptotic expansion of the form described in Section 1 can be reformulated by variable and
parameter transformation to coincide with the location model (17) plus a simple exponential term c6%y? /4n
with the related norming constant. Thus we have the extension of the location-type approximation to the

general asymptotic model.

5. Test quantities and the location approximations

Consider the parameterization invariant test quantities for the canonical location type asymptotic
model (23). For testing the null model § = 6, = 0, we have the score variable S(0,y) and maximum

likelihood estimate 6 ,

0 a a
s = S(039) = 5546:9) loeo = y—%—fﬂ 2—6—;1/3, (24)
~ c
O(y) = y— %(y+y3) - (25)

For the score we standardize with respect to expected information

. 2 aq + a2
i(0) = {802«0 y) : 0}9:0 -1-22%
giving the statistic
aq —}—ag as o ay 3
=2(0;y) = y(1 - - —y. 2
z=z(0;y) y( + ) 512y " o (26)

The signed square root of the likelihood ratio is

sgn(@ — 0){2(¢(B: y) - £(0;9)) }*/*
e\ _ a3 o 3agtaj 4
y(l 4n) 6n1/2Y om Y

r=r(0;y)
(27)

The canonical parameter of the exponential model approximation at the point y

inZ .

g — O _ 2_ G4y 3
v = pby) = 65(921) 6 — y+21/2(9 ) Gn(O Y+ o

For testing 8 =0 we examine the departure

~ _ C as 9 aq 3
@) —9(0) = y(1-5-) — 5omv’ — 5ov

and then standardize with respect to the observed information for ¢,

7= {1+%(1+5y2)}(1+%y2)_2= 1+%(1+y2).

The resulting standardized maximum likelihood departure using observed information is

_ . . ¢\ a3 2_2a4—303
9=4q(0;0) = y(l 4n) oni/zY 12n V- (28)



We now have three parameterization invariant test quantities: z in (26) based on the score; r in
(27) based on the likelihood ratio; and ¢ in (28) based on the maximum likelihood estimate for a locally
defined parameter. Each is normal (0,1) to order O(n~'/2); thus ®(z), ®(r), and ®(q) provide first
order significance.

The location analysis in DiCiccio, Field and Fraser (1990) shows that the mean and variance corrected

version of r = r(0;y) is

(29)

as 9a4 + 11a3 as 3a4 + a3
= (o) (- M) - g - M
3nt/ 72n 6nt/ 2n
and is normal (0,1) to order O(n™%).
We now record the connections among 2, ¢, r, R to accuracy O(n_%) . These are recorded in terms

of standardized pseudo cumulants of the null distribution together with the nonlocation characteristic ¢

B as+ai+e\ a3 5, Y9as+7a3 4
z = (1 + 4n )T 30172 on
a4 + ag + C) c 3
— (& ITEN &
( + 4n q 4nq
_ a13 o+ (1 27a4 + 13a§) _ 03 po 9a4 + 7a§R3
3nt/ 2n 3nl/2 2n
_ as 5 9as+7a% —18¢c ,
C= " gan" T on
as + a3 + C) c
= (1-2E37%, 4+ =
( 4n #t 4nz
as 9a4 — 5a3 — 186) as 5 9as+7a3—18¢c 5
= B (1 - -
3nl/2 + ( 2n R 3n1/2R 2n R
as +a? + c) az 5 9as+23a3 4
= (1T HTC 204 T 4903
’ ( in TSV o0 -
_ as 5 9as +23a3 —18c 4
= 4t gaptt n g
as 9ay4 + 11a — 18¢
N )
a2 T (1+ on R
R_ __ 9 ( B 9a4+11a§—180)r
 3pl/2 2n
_ a3 (1 _ 27aq + 29a§) 4+ 2 9ay + 23a’ 3
~ 3nl/2 72n 3nl/2 72n
a 9a4 + 11a2 — 18¢ a 9a4 + 23a2 — 18¢
ISR VRS B R T B
3nl/ 72n 3nt/ 72n

6. The Exponential to Location Connection

For a distribution on the real line with a real parameter we have developed canonical versions of the
exponential type and location type models. Now suppose we take the exponential type model (8) and

apply the procedure in Section 5 to derive the location type model ; we obtain

a— (3As +5A3%)/24n 0 -1 Az/n'/? Ag/n
0 1 —Az/nr? —Ay/n -
—{1+C/2n} Az/nt/? (A4 +C)/n - - (34)
—A3/n1/2 —A4/TL — — —

(A4 — 6C)/n - - - -



with
Az = —a3/2, Ay = —(4as +9a3)/12, C = (2a4 + 3a3)/6 + ¢
as = —2A3 , Q4 :—3A4—9A§ ; C:A4+A§+C .

Thus we can convert easily between the two types of approximation. Also we can cross check the connec-
tions between the invariant test quantities as expressed in terms of exponential-type characteristics as,

a4, ¢ in Section 3 and in terms of the location type characteristics Az, Ay, C.

7. Discussion

The connections among the test quantities provide a basis for examining the distribution and power
properties of the quantities; this is not pursued in this paper. The model in Section 2 leads to a simple
proof of the p* formula (see Fraser & Reid, 1993b) and to a simple proof of the parameterization invariant
tail formula (Fraser, 1990; Fraser & Reid, 1993a).

In this paper the method of analysis is to expand the logarithm of a statistical model in a Taylor
series about a data point and a corresponding parameter value; in an asymptotic context, the higher order

Taylor series coefficients drop off in powers of n~1/2

. The expansions can then be used to derive formulas
in terms of basic quantities derived from likelihood. These latter formula often have accuracy with small
samples, far beyond that suggested by the asymptotic theory.

As an example of the calculations consider the Cauchy model with log density = —lognm — log{1 +

(y — 6)?} . The Taylor series coefficients about (y,8) = (0,0) to the fourth order are

a 0 -1 0 3
0O 1 0 -3

-1 0 3
0 -3
3

Suppose we are interested in left tail probabilities at say y = —10, —5, —3, —1 for the Cauchy
with § = 0. If we were to calculate from the expansions we would obtain meaningless numbers. However
if we calculate the likelihood ratio r and the standardized canonical parameter departure ¢ and thus use

natural invariants in formula (16), we obtain(Approximation) quite reasonable values (in percent):

Data point —10 -5 -3 -1

likratio 0.12 0.53 1.60 11.95
mle 0.00 7.68 x 10713 0.001 7.86
score 55.57 60.72 66.43 76.03
Approximation 2.81 5.58 9.14 23.22
Exact 3.17 6.28 10.24 25.00

By contrast the first order methods based on likelihood ratio, ordinary maximum likelihood, and score are
seen to be far from the exact; observed information standardization was used.
The expansions are used to prove the results but the likelihood based versions have extraordinary

accuracy, unexpected from their derivations.
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