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SUMMARY

Tangent exponential models at a data point lead to third order significance for compo-
nent parameters (Fraser & Reid, 1989, 1993a,b,1995). With nuisance parameters, adjust-
ment factors to a tangent exponential model can arise; for example, with conditioning for
exponential models and with marginalization for transformation and general asymptotic
models. Methods of calculating these adjustments are discussed and different versions of
the resulting significance formulas are derived. Examples and numerical comparisons are

given.



1. INTRODUCTION

Saddlepoint methods (Daniels, 1954; Barndorff-Nielsen & Cox, 1979; Lugannani &
Rice, 1980) provide density and distribution function approximations for the minimal suf-
ficient statistic in a full exponential model. For the model f(z;0) = exp{0y(x) —c(0) }h(z)

with 0 as a row vector, the density approximation for y of dimension p,

a C

2
Fly;0) = oz exp{ - %}5"1/2 : (1.1)

(2m)P
is accurate to order O(n=%/2), where ¢ = 1+0(n™1) is a constant, —r2/2 = £(6; y) —£(6; y)
is the log likelihood ratio, and j is the observed information for #. For the case p = 1, the

distribution function approximation (Lugannani & Rice, 1980)

A

F(y:0) = 0(r.0) = (1) + () {7 = -} (12)

is accurate to order O(n~=3/2) where ¢ = (§—6)7/2

is the standardized maximum likelihood
departure and r = sgn(q)(r?)'/? is the signed log likelihood ratio statistic. This assumes
that the initial model is asymptotic as a sample size parameter n — oo.

An alternative formula with argument 7* is available from Barndorff-Nielsen (1991)
F(y;0) = o{r — r~"log(r/q)} + O(n~/?) . (1.3)

Earlier formulas similar to this may be found, for example Barndorff-Nielsen(1986), but
the components were different, involving mean and variance corrections. In applications
the preceding formulas are found to have remarkable practical accuracy, seemingly due to
the use of likelihood invariants rather than the mean and variance type corrections as for
example in Bartlett (1955), McCullagh (1984), Barndorff-Nielsen (1986).

Pierce & Peters (1992) give a detailed survey of such approximations for discrete
exponential models, and find it valuable to distinguish between two influences on correction

terms such as the second term in (1.2): nonnormality for the likelihood ratio; and nuisance
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parameter effects. They also discuss different versions of the approximation in (1.2). We
examine some general aspects of the correction terms and of the approximations related
to (1.2) and (1.3).

In Section 2 we briefly survey some general model density and distribution function
approximations. In Section 3, for an exponential model, we examine the norming of like-
lihood or density adjustment factors and then determine in Section 4 the corresponding
distribution function. Some alternative formulas are developed in Section 5 and numerical

comparisons presented in Section 6.
2. SOME BACKGROUND

For a general asymptotic model under quite general conditions, Fraser & Reid (1993b,
1995) describe a method of reducing the dimension n of the basic variable to the dimension
p of the parameter and determining the minimum additional information for third order
inference; all that is needed are p tangent vectors vy,...,v, to the conditioning surface at
the observed data point 3°. Then, relative to the data point 3", we obtain an approximating

exponential model

C A ~ ~_
9(y; 0)dy = W exp{£(0;y°) — £(6;4°) + (¢ — 900)3}14; Y2ds (2.1)
where
d
¢ =p(0) =Ly (0;y°) = 70 ) (2.2)

is the gradient of the likelihood in the tangent directions V' = (v1,...,v,) at the data point

y°,

A 0
s =s(y) =£,(0%y) = 557 L0 9)lgo (23)

Y
is the corresponding score variable, and ip is the observed information for ¢ from the
tilted likelihood in (2.1); the approximation is accurate to O(n=3/?) in a first derivative

neighbourhood of y° and to O(n™') on a compact set for the standardized variable; the

determination of the vectors V' is discussed in Fraser & Reid (1993b, 1995).
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Also, for example, if p = 1, the Lugannani & Rice (1990) approximation (1.2) applied
to (2.1) at the data point y° agrees to order O(n=3/2) with the distribution function of
the conditioned model described above.

More generally, with § = (A, 1) and a scalar interest parameter v, a further reduction
can be obtained to a scalar variable that measures departure from a particular value for

1. The approximating distribution is an adjusted exponential model

9(y; x)A(y; x)dy (2.4)

where g(y;x) is exponential and A(y;x) = 1 + O(n~'/?) is an adjustment factor; the
parameter x = Y a;y; is a linear function of ¢ in (2.2) such that dx = 0 means dy) = 0 at
00: at the data point y°

_ [y (6°)71/2
G (03)|71/2

is a quotient of nuisance parameter informations, recalibrated on the ¢ scaling; for de-

Ay x) (2.5)

tails see Fraser & Reid (1993b, 1995). This adjusted exponential model gives O(n=3/2)
significance for v at the data point y°; we examine this generally in the next section.

An alternative formula with a different expression replacing ¢ is given by Barndorff-
Nielsen (1991); the formula however needs the variable and parameter to be of the same
dimension; thus as a separate issue an appropriate ancillary must be found as for example

by the methods using the vectors V' discussed above.
3. ADJUSTMENTS TO DENSITIES AND LIKELTHOOD

Consider an adjusted exponential model g(y; 6)A(y; 0)dy as defined at (2.4) but now
assume that y and 6 have dimension d.

To derive properties of this model it is convenient to use standardized canonical coor-
dinates for the exponential model g(y; ) relative to some initial data point y° of interest.

Let a new 6 measure departure of some initial # from #° in units of observed information
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for that parameter, and let a new y measure departure of the initial ¥ from 3° scaled so
that it is the score variable for the new 6; for details see Fraser & Reid (1993a, 1995).
Also we rewrite the adjustment as A(é; ) where f is the maximum likelihood estimate as

calculated from the exponential component model g(y; ). The model then has the form

C

—r2 . A
ami® T AG:0)dy (3.1)

where —r2/2 = £°() — £°(6°) + 0y, A(6;0) = 1 + O(n~'/?); the accuracy is as described

after (2.3). For the analysis, we have
E(0)=0+bn"Y24+0(n™Y), E@0) =1+00+0(n"?) (3.2)

based on the approximate d variate standard normal for y and for 0.

Sometimes, the adjustment factor may be only partially available A(é; 0) as a likeli-
hood; then A(6;0) = A(f;6) h(d) with h unknown. Other times, the adjustment factor
may be only partially available A(6;6) as a relative density: then A(6;0) = A(0;0)h(6)
with the norming constant A (#) unknown. We examine these cases in an O(n~3/2) context.

We expand to the second order in 6 and 6:

A 2
A(0;0) = ago + —2b+ 2 g 4 @02 + 204Gy 4 a(;f 62 + O(n=%/?) | (3.3)

1/ nl/2 m

where for simplicity of presentation we examine just the d = 1 case. The adjustment factor

must have expectation unity with respect to the exponential model; thus by substitution

2 B
a1 + o1 o Qg0 + 2a11 + ag2 P +O(n_g/z)
nl/2 2n n

from (3.2) we obtain E,{A(f;6)} = ago+

and thus
B
ago = 1— E+O(n_3/2) , ar0+ao1 = 04+0(n7Y) , ag+2a11+age = 0+0(n~"2) . (3.4)

The same holds for general d using vector and matrix coefficients.

Now suppose the adjustment factor A( 0) is known only as a likelihood; then



It follows that

A6;6) = A(6:9) (1- E) (3.5)
A(6;0) n
and the model can be written
c 1,9 A(0:0
W exp{—r2/2}|]| Uzﬁdy (3.6)

where the extra constant is incorporated into the ¢’; note that we have normed by replacing
9 by 6.
Alternatively, suppose the adjustment is known only as a density function with norm-

ing constant; then

A A

A(6;0) = A(6;0)h(0) ,

A(0;0) = A(0;0)h(0) .

It follows that

- A(6;6) B
A(6:0) = = 1—— }
and the model can be written
z w2 A(G:0)
WGXP{—E}M / mdy (3-8)

where the extra constant is incorporated into the ¢”; here we have normed by replacing 0
by 6.
Example 1. Consider an exponential model exp{\y; + ¥y2 — c(\, ¥)}h(y1,y2) where
A, ¥ have dimensions p — d, d. The distribution for inference concerning v is ya|y; = y?
which is free of A.

The full model likelihood at a point (y?,y2) is (X, %; y?,y2) in the usual notation.

For a fixed value of 9, y; is a sufficient statistic for A: thus )A\w = 5\2) for points (y?,y2)
and the density of y; at y? can be approximated by (1.1) as

m exp{l(A, ¥; 93, y2) — E(XY, 599, y2) Hia (A, v« ) 71/2 (3.9)
6



The conditional log likelihood is then available by subtraction

Z()\O,lﬁ yl,yz)+ IH‘JA()\WQP '!h)‘-

The profile likelihood is of exponential type

L0, ;90 y2) = LO(A°, ) + s

Thus we can use (3.5) and obtain the adjustment

(g, )72
(A, ) [1/2

This corresponds to the approximation

Mk
i (A, 1) [~1/2

C
g on (=) :

for the conditional model for inference concerning 1), where —rz /2 = E()A\w,'gb) — E()A\,qﬁ)
is the profile likelihood for 1; see Barndorff-Nielsen(1979), Cox & Reid (1987), Fraser &
Reid (1993a).

4. SIGNIFICANCE AT OBSERVED DATA

Consider an adjusted exponential model g(y;G)A(é; 0)dy for the scalar d = 1; we

analyse the model in the equivalent form (3.1):

e 2 A6, 0) |57 2dy 4.1
N CHOIM Y (4.1)

Without an adjustment, the corresponding distribution function to order O(n=3/2) is given
by (1.2). We now examine the effect of the adjustment factor.

First we change the variable (Fraser & Reid, 1993a) and have

iy = gdr (4.2)



where 7, g are defined for the exponential model after (1.2). Then from Fraser & Reid
(1993a) or Abebe et al (1993) we have that r/q = 1 to order O(n~'/2). For the integration

we will need the asymptotic form of 7A/q. For given 6 we expand in terms of r:

A
% =1+ayr/n?+ayr?/2n+0O(n=%?) . (4.3)

Now consider the distribution function for the model (4.1)

F(y;0) = / \/%_ﬂ_e_’ﬂmAgdr
=cP(r) + c/ () (Ag

=c®(r) + co(r) (= —

(4.4)

with @ = q/A; in these calculations, we use r¢(r)dr = —dy(r) before integrating by parts,
d(A/q —1/r) = (a2/2n)dr, and then (4.3) and the norming property of the distribution
functions to consolidate the constants. It follows that the distribution function is given by

(1.2) or (1.3) with ¢ replaced by Q = q/A.
5. ALTERNATIVE FORMULAS FOR SIGNIFICANCE

Consider an adjusted exponential model in the form (4.1),

C
(27‘()1/2

e 12 AjTV2qy; (5.1)

we assume that a likelihood —r2/2 = £%(p) — £°(4°) + @y is expressed in terms of a
canonical parameter ¢ and has corresponding score variable y and information 7; also

that the adjustment factor is asymptotic as at (2.4) and that interest lies in significance
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p(p) = P(¢ < @Y% ¢) for the data value y° underlying the exponential model expression.

From Section 4 we have

S|
<=

p(p) = ®(r,q/A) = @(r) + ¢(r)( ) (5.2)

to third order; r and ¢ are the signed likelihood ratio and the standardized maximum
likelihood departure in the ¢ scaling; see the definitions following (1.2). We refer to this
as the initial method M, with adjusted maximum likelihood estimate.

A numerical procedure for calculating the significance function p(¢) with A = 1 is
described in Fraser, Reid, & Wong (1991). The procedure needs the input of a grid of
values for the likelihood ¢°, which may be in terms of some initial parameterization 6,
and corresponding values for the canonical parameter ¢. The computation produces the
significance function expressed in terms of ¢ or in terms of the initial §. If an adjustment
factor A is present, it can also be input to the program, giving the more general significance
function p(¢) in (5.2).

In summary, if we have a likelihood /¢, a parameterization ¢, and an adjustment A,
then by the program or directly we can calculate the significance function. For this we
note that an affine change in ¢ to say a + cp has no effect on the calculations; it just alters
the canonical parameterization with compensating adjustments otherwise.

We now discuss some alternative formulas that arise from shifting overall likelihood
contained in A into the likelihood of the exponential model. For this we assume the initial
¢ arises as a likelihood gradient (2.2).

Consider a factorization A = A;A5 such that each component has the asymptotic
properties at (2.1). We suppose that the component adjustment A; is moved to the

exponent to give a new exponential likelihood,

2 2
’I“l T
——__ 4tInAi+a 5.3
2 2 ! ( )

where a constant a may be needed to give maximum likelihood equal to zero.
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Does this alter the canonical parameterization associated with the exponential model?

Using the standardized coordinates as at (3.1) and expanding log A1, we obtain

aio aop1 4 . A20 ,9 . 2011 ,4 . @02 A9
log A = —0+ —0+ —0 —00+ —0 5.4
0841 = oo + nt/2 + nt/2 + 2n + 2n + 2n (5-4)

with gradient relative to say 0

Sy Mg (5.5)

at the data y°® with 60 = 0; this makes only an affine adjustment to the initial ¢ and can
be ignored as noted earlier. We can obtain significance numerically (Fraser, Reid, Wong,

1991) or directly with

1 A

plp) = ®(r1) + W(ﬁ){a o (5.6)

where r; is the signed likelihood ratio from the modified exponent, and ¢; is the maximum
likelihood departure using the original ¢ but standardized with respect to the modified
likelihood.

Consider a first modified formula M; obtained by placing the full adjustment factor

into the exponent

2 2
T
5 5 +InA+a. (5.7)

This gives a new signed likelihood 77, the same canonical parameter ¢ with departure ¢;
standardized with respect to 71, and no adjustment factor; we thus have a first formula

M, with adjusted likelihood:

pi(p) =2(r1,q1) - (5.8)

For a second modified formula M; we move the combined Ar/q to the exponent

2 2 r
—5:—5+1n(,45)+a. (5.9)
In the pattern of (5.3) this makes a quadratic contribution to the new —r3/2 and corre-
spondingly makes o an affine function of r with scale factor of order O(n=1). This gives

a second formula M, with a normalized likelihood:

p2(p) = (rz) = (r2,72) (5.10)

10



A third formula is obtained by a minor modification of the preceding. We complete

the square for the expression on the right side of (5.9),

7‘% 1 T

T2 ——{r—r_lln (A_)}27 (5.11)

2 2 q

and note that {r~!1n(Ar/q)}? is a constant K /n using calculations as in (5.4). This, with

the preceding, then gives a third formula M3 based on a normalized variable

p3(p) = @{r —r " In(4r/q)} (5.12)

which gives an extension of Barndorff-Nielsen’s (1991) r* formula to cover the adjusted
density case.

We now have four formulas My, My, My, M3 for p(p) given by (5.2), (5.8), (5.10),
(5.12).

6. EXAMPLES

For the general case of a real variable and a real parameter with no adjustment factor
A, the formulas My and M; are identical. The third order accuracy of the r* formula M3 is
established in Barndorff-Nielsen (1990,1991); the third order accuracy of an earlier version
of r*, operationally using mean and variance connections, was given in Barndorff-Nielsen
(1986). The third order accuracy of My = M; was established in Fraser & Reid (1989;
see also 1993); Barndorff-Nielsen (1991) indicates that the accuracy can be established
using a formula in Barndorff-Nielsen (1986). We compare these asymptotic formulas for
the extreme case with n = 1.

For the special case of an exponential model the third order accuracy of My = M,
was established by Lugannani & Rice (1980) and we could expect high practical accuracy
by viewing the formula as an approximate Fourier inversion. In a range of examples we

have found that My, M, My, M3 all give excellent accuracy, two figure accuracy verging
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on three figure accuracy even in the extreme tails. Some minor preferences are indicated

as follows,
Logistic My > My > M;
Gamma (3) My > My > M;
Beta (3,3) MO 2 M3 2 M2

using selected points on the range of the variable; overall My = M, seems preferable.

For nonexponential models we record results for a number of location models. A
more general model obtained (Fraser & Reid, 1993) as a blend of a location and exponen-
tial model shows no new features. Consider the location examples in Fraser (1990) and

Barndorff-Nielsen (1991),

Log gamma(3) (1/2) exp{3(y — 0) — e¥~%}
Gammal(3) (1/2)(y — 0)* exp{—(y — 0)}
Logistic exp{y — 0} (1 + ev—9}-2
Cauchy aH1+ (y—0)%}1,

for selected values of the variable. In each case the tail probability is recorded as a percent

and for the left tail or right tail (marked with R) as appropriate; see Tables 1 - 4.

Table 1. Log gamma (3)

y—0 -1.0 0.0 1.0% 1.5% 2.0% 2.5%
M 0.63 8.04 48.92 17.58 2.21 0.045
M, 0.63 8.05 48.89 17.56 2.21 0.045
M, 0.63 8.02 48.96 17.60 2.21 0.045

Exact 0.63 8.03 48.92 17.56 2.21 0.045

Table 2. Gamma (3)

y—0 1.0 3.0F 5.0% 7.0 10.0% 12.0%
M, 7.30 43.28 12.83 3.06 0.29 0.054
M, 8.29 41.78 12.22 2.89 0.27 0.051
Ms 7.78 42.75 12.65 3.02 0.28 0.053

Exact 8.03 42.32 12.47 2.96 0.28 0.052
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Table 3. Logistic

y—0 ~8.0 —6.0 —4.0 — 2.0 - 1.0 ~ 05
M, 0.037 0.27 1.91 12.22 27.15 37.90
M, 0.038 0.28 1.96 12.42 27.35 38.02
M; 0.037 0.27 1.90 12.21 27.15 37.90
Exact 0.034 0.25 1.80 11.92 26.89 37.75

Table 4. Cauchy

y—~0 —100.0 -30.0 —10.0 -5.0 - 2.0 - 1.0
My 0.28 0.94 2.81 5.98 13.30 23.22
M, 0.41 1.35 3.97 7.67 17.00 27.25
M; 0.15 0.61 2.14 4.69 12.49 22.83

Exact 0.32 1.06 3.17 6.28 14.76 25.00

The Cauchy values (Fraser, 1990) for the 7* type formula differ from improved values
in Barndorff-Nielsen (1991): the first used 7* based on a mean and variance correction as
in Barndorff-Nielsen (1986), the second used a new version of r* with certain likelihood
invariance properties. The change to likelihood invariance produces the improvement and
is consistent with comparisons made in (Fraser, 1990, Section 6). Method My = M; seems
mildly preferable for two of the examples, method M3 seems preferable for the second
example, and My and M3 are roughly comparable for the third example.

Adjustment factors arise with nuisance parameters and with curvature of canonical
parameters. The latter is typically not accessible to exact calculations; accordingly we
choose the nuisance parameter extension and examine location models for which exact
calculations are reasonably accessible.

For a first example consider the Cauchy distribution in R3, a special case of the

spherical Student distribution:
T 1+ (Y1 — AP+ (r2 — X)’ + (y — 9)*} 7%

see Table 5.
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Table 5. Spherical Cauchy

y— —100.0 —30.0 ~10.0 —5.0 ~ 1.0
M, 0.20 0.66 1.99 3.99 18.75
M, 0.28 0.94 2.81 5.58 23.22
M, 0.41 1.35 3.97 7.67 27.25
Ms 0.02 0.10 0.61 1.84 17.29

Exact 0.32 1.06 3.17 6.28 25.00

As a second example consider a spherical logistic

cexp(r){1 + exp(r)} 2

where 72 = (y1 — M)? + (y2 — A2)? + (y — 9)?; see Table 6.

Table 6. Spherical Logistic

y — b ~8.0 —6.0 —4.0 ~ 2.0 ~ 1.0
M, 0.15 0.83 4.13 17.09 31.09
M 0.14 0.78 4.02 17.24 31.36
M, 0.17 0.96 4.73 18.74 32.53
M; 0.14 0.77 3.94 16.91 31.05

Exact 0.10 0.60 3.32 15.68 30.11

For the third example consider a spherical beta (3,3) distribution with » on (0, 1),
c(1+7r)*(1-r)?,

where 72 = (y1 — A1)? + (y2 — A2)? + (y — ¥)?; see Table 7.

Table 7. Spherical Beta (3,3)

y— 1 ~0.9 0.7 0.5 ~ 0.3 — 0.1
M, ~0.032 0.64 5.87 18.76 38.65
M, 0.017 1.16 6.94 19.86 39.12
M, 0.020 1.22 7.08 20.01 39.18
M; 0.010 0.90 6.13 18.86 38.66

Exact 0.019 1.21 7.06 19.98 39.17
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7. DISCUSSION

In Sections 4 and 5 we discussed four methods My, M1, My, M3 of deriving a signif-
icance function for a scalar parameter in a general asymptotic model. All four methods
require the tangent directions V' = (v1,...,vp) for an approximate second order ancillary
surface at the data point (Section 2).

Methods My and M3 are more direct using the likelihood ratio r, and a standard-
ized maximum likelihood departure @Q; the first method then uses a Lugannani & Rice
type formula while the last uses a Barndorff-Nielsen type formula based on a third order
standard normal variable. Having a third order normal variable is attractive but such is
equally available as ®~1®(ry, Q) from the initial method.

The middle two methods M; and My use a modified profile likelihood which incor-
porates the logarithm of an adjustment factor; for the M; method only the nuisance
adjustment factor is incorporated while for the My method a nonnormality adjustment is
also incorporated. For some related discussion see Pierce & Peters (1992).

For exponential models all four methods give excellent accuracy with perhaps some
mild preference for the initial My = M; over the remaining methods.

For the nonexponential models My = M; and M3 seem preferable with M, better for
two examples and M3 better for one example.

For the multiparameter examples with two nuisance parameters the adjusted likeli-
hood methods M; and Ms seem preferable for two of the examples, while the normalized
variable method M3 seems mildly preferable for the spherical logistic (Table 6). The lo-
gistic example has long tails among distributions that have a moment generating function
and tail probabilities tend to be overestimated (Tables 3, 6).

The very short tailed distribution with spherical beta form (Table 7) produces a
negative value with the initial method M. While this is a mathematical possibility with

the approximation formula in M this is the first case that we have noted. It is avoided with
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methods Ms and M3. The possibility seems to correspond to heavy nuisance parameter
effect with change in interest parameter.

With large numbers of nuisance parameters the approximations tend to degrade (But-
ler, Huzubazar & Booth, 1992); we do not examine this issue here.

In summary we find mild preference for the direct methods My and M3 in the absence
of nuisance parameters, and some preference for the numerically more extended adjusted

likelihood methods M7, M5 in the nuisance parameter context.
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