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ABSTRACT

Recent likelihood theory has given us a deconstruction of the
statistical model that produces simple, highly accurate and unique
methods for the analysis of data from the model. We describe these
methods briefly and illustrate them with a succession of progressively
more substantial examples. Computer implementation is available
but presently needs automation.
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likelihood ratio, Simulations, Sufficiency, Third order asymptotics.
1. INTRODUCTION

A central objective in statistics is to determine the information
available concerning a parameter in the context of some given model
and corresponding data. The traditional use of suffficiency and some-
times conditionality have not produced incisive and widely applicable
methods. The Bayesian approach haé sought to fill this gap and does
yield a wealth of results: the approach does use the observed like-
lihood function and has thus partially compensated for traditional
theory where the observed likelihood function is typically not used in
a substantive way. The new likelihood theory is now widely applicable
for continuous response models and is being extended to the discrete
case covering categorical and contingency type models. For the dis-
crete case, however, the high third order accuracy drops to second
order as a direct consequence of the discreteness.

In Section 2 we briefly outline the recent likelihood theory and
then in Section 3 give a succession of examples that illustrate for the
continuous case the progressive extension from a simple exponential
model to a general continuous model. The discrete case now being

developed will soon be reported on.
2. BACKGROUND: RECENT LIKELIHOOD THEORY

The recent highly accurate likelihood methods need and use two
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functions of the parameter obtained from the model and observed

data £(0), ¢(0) where £(0) is the observed log-likelihood function
(1) £(9) = log f(y"0),

and ¢(f) is the gradient of likelihood at the data point in directions

tangent to an exact or approximate full ancillary
@ (0) = £y (6) = = (0: )|
99 - ;V - dV 1y yG

where V = (v1,...,vp) is an array of p linearly independent tangent
vectors recording tangent directions at the observed data y°. We
refer to ¢ as the canonical parameter as it can be presented as the
canonical parameter of a best fitting exponential model now to be
described. Some details for calculating the vectors V are recorded in
the Appendix.

The two functions £(0), (@) define an exponential model that
approximates the conditional model given an intrinsic ancillary in the

neighbourhood of the data point; the approximate model is

(3) fls:9) = (2m)7P/2e* exp{€(p) — £2(¢°) + 5" (0 — @°) H oo 172,

where k is constant of order O(n=!), £(0) has been reexpressed
as £{0(¢)} in terms of the new parameter ¢, and s is the score

variable with observed value s® = 0. For some background details
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see for example Fraser & Reid (1995). This tangent model provides
third order inference at the data point.

An equivalent pair of functions is given by £(0), 3(6) where [(6)
is the location parameter of a location model that gives a location
equivalent of the expounential model in the preceding paragraph. A
formula for S(f) in the scalar parameter case is given in Cakmak et
al (1995); an existence result for the vector case is given in Cakmak
et al (1994) and Fraser & Yi (2003).

We will see that a statistical model with data yields by very
simple calculations the pair of functions £(6), ¢(0) and that this bair
of functions leads to highly accurate p-values and likelihood function
for any scalar paramefer say 1¥(f) of interest. The alternate pair of
functions £(0), 3(f) provides equivalent information but in a different
form. The first pair is relatively easy to calculate and the second has
advantages for transparency and ease of interpretation.

Now suppose that we are interested in some scalar parameter
¥(0). The direct likelihood function information is then usually pre-
sented and used in the form of a signed likelihood ratio r(%) which

can be recorded as

1/2

(4) r = sgn( — ) [2{€(0) - £(0y)}]

where 0 is the full maximum likelihood value and 6y, is the maximum

likelihood value subject to the constraint (0) = ¢ . The likelihood
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gradient or canonical ¢ function information is usually used in the
form of a Wald type quantity ¢(¢) that includes a factor correspond-
ing to the elimination of the related nuisance parameter; this special
Wald type quantity is recorded in equation (9) with supplemental
details in the Appendix. The third order p-value function for assess-
ing ¢ can then be calculated by using the Barndorff-Nielsen (1986)

formula
{5) p(¥) = @(r*) = ©{r — r~'log(r/q)} ,

where & is the standard normal distribution function, or by using
the earlier Lugannani & Rice (1980) formula. It follows trivially that
the survivor function for ¢ using a flat prior for the location model
Just mentioned agrees to third order with the just described p-value;
for some background see Fraser & Reid (2002).

Thus p-values and survivor values are available to third order
for scalar parameters under moderate regularity and continuity; the
examples below indicate the ease, flexibility and accuracy of the im-

plementation,
3. SCALAR VARIABLE AND PARAMETER

Consider a simple exponential model with scalar variable and

scalar parameter:

Fly:0) = exp{yl — x(6)}h(y)
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where £(t) is the cumulant generating function for y when 0 =0; a
location shift for ¢ may be needed in some examples. A simple Wald

type statistic based on the canonical parameter 4 is

(6) g=(0-0)j/*

where # is the maximum likelihood value for 6 and j is the corre-
sponding observed information

- e
™ 7= 5599259,

at the observed data. Then the signed likelihood ratio r and the
given ¢ produce third order p-values at the observed data using the
Barndorff-Nielsen or Lugannani & Rice expressions discussed in the
preceding section. This calculation is equivalent to the saddlepoint
approximation (Daniels, 1954, 1987) as extended to distribution func-
tions by Lugannani & Rice (1980). Now in an example we compare
this third order approximation with the exact value and with the fa-
miliar first order p-value approximation given by ®(r) based on the

signed likelihood ratio.

Example 1. Simple exponential life model.  Consider the
simple exponential life model f(y;f#) = Oexp(yd) with y < 0 and

6 > 0. The log-likelihood function is

2(0;y) = yf +logb
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and the canonical parameter is just #. The p-value records probabil-
ity left of the observed maximum likelihood value and here this is just
the probability left of an observed data. Without loss of generality,
consider an observed value y® = —1. Table 1 records the p-values
obtained by the likelihood ratic method, the third order method, and
the exact method for the following values of the parameter ¢: .01, .1,
10, 100. Note the very high accuracy of the third order method even

for the extreme € values.

Table 1: Left tail p-values for 8 =.01,.1,1 and 100 and y = —1
calculated using the likelihood ratio (Ir), third order (3rd)

and the exact (exact) methods.

0 .01 .1 10 100
Ir 996416  .953020 .0°1262  .0%22021

3rd 989759  .903889  .0%4697  .0%33971
Exact 990050 .904837  .0%4940  .0%33921

Now consider an asymptotic model for y with parameter 6, both
scalar; this can arise with an accumulation of data affecting a scalar
variable, and indeed can arise embedded in some very general models.
The likelihood function is immediately available; the canonical param-
eter needs, as mentioned earlier, a tangent direction at the data point;
but for the scalar variable, this corresponds to just increasing the vari-
able. Thus the derivative in (2) became just an ordinary derivative

and we obtain just the ordinary derivative of the log-likelihood at the
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data point with respect to y:

(8) 0(0) = £y (0; )]0 = -(%ew; 9l .
,yD

This gives third order accurate p-values for €. For some numerical
examples see Fraser (1990) and Fraser, Reid & Wu (1999). The inter-
esting thing is that it suffices to get, beyond the observed likelihood,
Jjust the locally defined canonical parameter, cp(rﬂ) , the canonical pa-
rameter-of-some locally best fitting exponential model; and this retains

the third order accuracy for the p-value function.
4. dim p VARIABLE AND PARAMETER

Consider a simple exponential model with vector variable and

vector parameter having the same dimension p:

f(y:0) = exp{y'0 — x(0)}h(y)

where x(t) is the cumulant generating function for the vector y when
0 = 0. Suppose that statistical interest rests on a scalar parameter
component () and that A is a complementing nuisance parameter.
The signed likelihood ratio is given by (4) above. The Wald type
statistic (6) is modified in an easily described way (see for example

Fraser & Reid, 1995) giving

" 1/2
(9) g(v) = sgn(y° — ) |x(0) — x(6,)] {L‘P'} ;
Joan) (Oy)
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where x(f) is a rotated coordinate of ¢(#) that agrees with 1(6)
at 0y and acts as a surrogate for ¥(0) at By, and the full and
nuisance informations are recalibrated in the ¢ parameterization, as
indicated by the use of parentheses around A\. Formulas for these
are recorded in the Appendix. This has the form of a Wald statistic
(6) calculated for the modified interest parameter x(f) multiplied by
:(j‘()u\)?1/?/;3‘(,\/\)(631,0)!1(2 which is the root of a ratio of recalibrated
nuisance informations and takes account of the elimination of the
nuisance parameter. If ¥ and A are canonical parameter coordinates
of 0 then x can be taken equal to ¥ and the recalibrations can be

overlooked.

Example 2. The Weibull model.  Consider a sample from

the Weibull model

rsr=3 (3) " ool ()}

on the positive axis with shape and scale parameters 8 and 7, re-
spectively. The typical scalar interest parameters are: 3, 7, and the
c th percentile which takes the form wq = log{n[-log(1 - )]}/#} .
For our empirical illustration, we use a sample of the strike dura-
tion data given in Kennan (1985). The data used by Kennan is from
the Bureau of Labor Statistics and reflects strike durations in days
involving at least 1,000 workers for the US manufacturing industries

for the 1968 to 1976 period. The complete data set is in Kiefer (1988).
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We restrict our sample to strikes beginning in June of each year for a
total number of 62 observations. Table 2 records the 95% confidence
intervals for the 3 parameters of interest calculated by the likelihood
ratio and by the third order likelihood method. The confidence in-
tervals by the two calculations are strikingly different for each of the
parameters examined. Theory and simulations put our trust firmly

on the third order results.

Table 2: 95% confidence intervals for g, n, and median using
the likelihood ratio (Ir) and the third order method (3rd)

for the Kennan data.

| 95% CI for S 95% CI for n | 95% CI for median
Ir 1 (0.6959,1.1141) | (30.6670,58.2784) | (19.4879, 38.5315)
3rd| (0.6794,1.0944) | (30.7924,59.2684) | (19.4097,38.8668)

To illustrate the accuracy of the third order method in the small
sample setting, we consider a sample size n = 10 from the Weibull
model and simulate with N = 10000 repetitions. The true parameter
values are taken to be 8 = 5 and n = 10. Table 3 records the
proportion of samples whose p-values lies below 0.005, 0.025, 0.05
and above 0.95,0.975,0.995. The nominal or target values then are
0.005, 0.025, 0.05,0.05,0.025 and 0.005 respectively. The third order
likelihood method gives excellent coverage, very close to the nominal

or target!



Fraser, Wong and Wu

183

Table 3: Simulation proportions for the p-values

lying in the lower and upper .5%,2.5%,5% ranges.

Parameter | Method | lower 0.5% lower 2.5% lower 5%
B8 Ir 0.0174 0.0619 0.1097

3rd 0.0048 0.0264 0.0521

7 Ir 0.0109 0.0430 0.0787

3rd 0.0050 0.0261 0.0539

median Ir 0.0094 0.0356 0.0663
3rd 0.0053 0.0262 0.0534

Parameter | Method | upper 5% upper 2.5% upper 0.5%
B Ir 0.0223 0.0112 0.0016
3rd 0.0475 0.0236 0.0056

n Ir 0.0580 0.0313 0.0068
3rd 0.0514 0.0245 0.0051

median Ir 0.0666 0.0357 0.0084
3rd 0.0483 0.0251 0.0049

Now consider an asymptotic model for y with corresponding

parameter @, both vectors of the same dimension; this can arise with

an accumulation of data affecting a vector variable, and indeed often

arise embedded in quite general models, The likelihood function is

immediately available. The canonical parameter needs the existence

. of tangent directions at the data point, but on the space of dimension

p these correspond just to changes in the variables. Thus

w(0) = £4(0;4°) = 0£(0;y)/Bylyo

which is just the gradient of the log-likelihood at the data point, that

is, the vector derivative with respect to y. This gives third order
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accurate p-values for scalar component parameters say ¥ . For some
numerical examples and simulations see Fraser, Wong & Wu (1999).
The interesting thing is that it suffices to get, beyond the observed
likelihood, just the locally defined canonical parameter w(0) which
Is the canonical parameter of some locally best fitting exponential
model, and yet this retains the high third order accuracy for p-value

function for any choice of the scalar interest parameter (4)

5. VARIABLE WITH DIMENSION GREATER THAN THE
DIMENSION OF THE PARAMETER

The solution for the general case with dimension of the variable
larger than that of the parameter has been resolved by showing that
there exists an approximate ancillary of dimension complementing the
dimension of the parameter, and that only the corresponding tangent
directions at the data point are needed for third order infefence; for
details see Fraser & Reid (2001). The tangent directions V can in
fact be obtained from a full dimensional pivotal quantity, say z(y;0),
of dimension n. With independent coordinates the pivotal quantity is
naturally just the vector of distribution functions. with say Fi(yi;0)
for the 7th coordinate. The pivotal quantity skows how a change
in ¢ affects a particular coordinate and the corresponding flow of

probability generates the ancillary (Fraser & Reid, 2001). This gives

(10) y = —z;l(yo; @D)z;e(yo; 60)
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where the subscripts denote partial differentiation. The canonical pa-
rameter is then obtained by differentiating the log-likelihood function

at the data point y°; for p =2, we would then have

o (0) = {p1(0), p2(0)} =;€,f(0;y)

Q

¥=y

d d
— {mt(0:9) o - tl0:3)}

where the derivatives are directional derivatives in the directions vy, vs .

y=y°

Example 3. Nonnormal regression. The standard anal-
ysis of the regression model is based on normally distributed errors. It
is however widely acknowledged that error quite generally has longer
tails and something like the Student distribution on six degrees of free-
dom providres a more realistic error structure. The recent likelihood
analysis provides a definitive analysis for this more realistic condition
of the regression model. A detailed discussion may be found in Fraser,
Wong & Wu (1999).

Comnsider the lincar regression model
y=XpB+oe

where y and e are n vectors, X is the n x r design matrix and
the components of e have a known distribution f(e;) = exp{£(0)}

which has been centered so that the slope s(e) = dé(e)/de is zero at
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the origin: s(0) = £(0) = 0. For illustration we will consider the
normal case with I(e) = —e®/2 and the Student (6) case with

T e? I'(7/2) 1 .
t(e) = —Elog (1 + E) -l—logm - Elogb.

The parameters are the regression coefficients 4 and the error scaling
o . The log likelihood has the form
L0) = —nlogo + ie- {y——XE}
i=1 7
where X; is the ith row of X .

There is a natural pivotal e = (y — Xf8)/o which has full di-
mension n. The tangent vectors V = (v1,...,Ur41) are obtained
from (10) and have the natural form V = {& X3} where é is the
standardized residual vector, é = (y — X B) /& and Xf is the tan-
gent plane at the observed data. From this we obtain the canonical

reparameterization

er—ﬂ

S (255

which is written as an (r + 1) -dimension row vector. The special
r+ 1 functions £(0),¢1(0),...,¢.(0) can be input to the computer
program and numerical p-values can be obtained for any component
parameter of interest, all following the procedures described in Section

2
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For some real data examples, see Fraser, Wong & Wu (1999). For
normal error, we have no need for the present calculations of course,
so for simulations, we consider the Student(6) error distribution. We
have N = 100,000 repetitions from a regression model with a very
small n = 2 data vector with X = 1 which gives just the location
model y; = it + oe;,y2 = 4+ oez and with the chosen values p =
0,0 = 1; we then tested the distribution of the p-value p(u) for

the null hypothesis i = 0. The observed proportions are recorded in

Table 4.

Table 4: Observed proportions for p(0)
in the lower 0.5%, the next 2%, the next 47.5%,

in the next 47.5%, the next 2%, and the upper 0.5%

Method | Lower 0.5% Next 2% Next 47.5%

Ir 1.975% 3.909% 44,325%
3rd 0.580% 1.567% A7.777%
Target 0.5% 2% 47.5%

Method | Next 47.5% Next 2% Upper 0.5%

Ir 43.959% 3.613% 2.222%
3rd 47.722% 1.749% 0.605%
Target 47.5% 2% 0.5%

This records a simulation of a very extreme case with nonnormal
error and with a sample of size n = 2. It shows the clear superiority

of the higher order likelihood ratio method which in turn tends to be
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much more stable than the score or maximum likelihood departure
methods. We do note that the values for the lower 0.5%, and next 2%
and the corresponding upper 0.5% and previous 2% are much closer
to the target value by the third order method than the likelihood ratio
method; however, it is still not within the 95% confidence range of the

proportion of coverage.
6 DISCUSSION

We have recorded the formulas for going from likelihood and
canonical parameter to the p-value function for an arbitrary scalar
parameter and illustrated the calculations with a succession of three
examples involving models of progressively more comprehensive struc-
ture. The accuracy obtained far surpasses that available from the
likelihood ratio calculations which in turn far exceed that available
from Wald and Rao type statistics.

The application of these methods do require the calculations of a
canonical reparameterization which has the role of a canonical param-
eter in an exponential model. The calculations involved are discussed
in the three examples.

Our theme is that highly accurate essentially unique p-values
are available by simple and direct procedures working from likelihood

at and near an observed data point.

7. APPENDIX
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The full information determinant calculated in the new parame-

terization is available as

5oy] = 1700(8) 08 ()] 2

using the Jacobian ¢g(f) = 8¢(0)/86’. The nuisance information

determinant in a somewhat similar way takes the form
200y 08)] = 153a0)] - oxr ()72 = s (8y)] - | X' X |2

where the right hand determinant uses X = ¢x(6,) and in the re-
gression context records the volume on the regreésion surface as a
proportion of the corresponding volume for regression coefficients; in
the preceding formula this changes the séaling for the nuisance param-
eter to that derived from the ¢ parameterization. The expressions
above are for the case where ¢ is given as (4, \’) with an explicit
nuisance parameterization; the more general version is recorded in
Fraser, Reid & Wu (1999). The rotated coordinate x(f#) in the ¢
parameterization is obtained from the gradient vector of (8) at 4,
and has the form
5. zb,pr(§¢)

o) = Yerlo) gy
MO @

where the first factor is a row vector which is the unit vector corre-

sponding to the gradient '!,bfp(é-,p) and is obtained from

Yy (0) = 04(0)/0¢" = (0v(0)/00') - (89(6)/90') ™" = Yo (0) 5 (8);
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in this we take 9, to be the Jacobian of the column vector ¢ with
respect to the row vector ¢’ and for example we would have (¢, Y=

1,D{p for the transpose of the first Jacobian.
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