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SUMMARY

Some recent methods of third order asymptotics produce remarkably accurate sig-
nificance probabilities but implicitly require the variable to have the same dimension as
the parameter. A method for constructing an approximate ancillary given in Fraser &
Reid (1995) extends these methods to a general models with asymptotic properties. These
extensions are used to give third order significance for a real parameter in a non-linear
regression model. Emphasis is placed on the normal error model but extends to the non-
normal additive error case and to generalized linear and nonlinear models; discussion here
is restricted to the known variance case. Examples are given illustrating accuracy and
generality, and comparisons are made with some first order methods.



1. INTRODUCTION

Recent methods of third order asymptotics can produce significance probabilities that
have remarkable accuracy, but for implementation require the sample space dimension
to be equal to that for the full parameter. From a practical viewpoint this effectively
restricts the approximations to location, transformation and exponential models where
the reduction methods of conditioning or sufficiency are available to give a variable of the
same dimension as the parameter.

The recent third order significance approximations have evolved from the saddlepoint
method (Daniels, 1954; Barndorff-Nielsen & Cox, 1979) or from the direct analysis and
Taylor series expansion of log density functions (Barndorff-Nielsen, 1986; DiCiccio, Field
& Fraser, 1990; Fraser, 1990; Fraser & Reid, 1993). Some early formulas used mean and
variance corrected quantities but the exceptional accuracy of some recent formulas seems
to arise from a natural invariance obtained from the use of simple likelihood characteristics.
Some general remarks on significance and third order approximation are given in Fraser
(1991).

For an exponential model with a real canonical parameter, see Lugannani & Rice
(1980). For a real component parameter in a general model, a mean and variance corrected
formula is given in Barndorff-Nielsen (1986), but the implementation was rather compli-
cated as subsequently noted by Barndorff-Nielsen (1991). For a canonical component of a
transformation model, see DiCiccio, Field & Fraser (1990). For a real parameter general
model or a canonical component of an exponential model, see Fraser & Reid (1993). For
a real component parameter in a general model, see Barndorff-Nielsen (1991) and Fraser
& Reid (1995); the latter has an ease of implementation obtained from the use of tangent
location and tangent exponential models.

The preceding approximations are essentially restricted to the case where the dimen-
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sion of the variable is the same as that of the parameter. For the more common situation
where the dimension of the variable is larger, Barndorff-Nielsen (1983) gave the existence
of a third order ancillary but not an implementable construction procedure. Fraser & Reid
(1993; 1995) show that only the observed likelihood and the likelihood gradient tangent to
the ancillary at the data point are needed for third order inference and that it suffices to
have the gradient with respect to a second order ancillary. Fraser & Reid (1995) used the
tangent location method (Fraser, 1964) to generate the tangent directions for the second
order ancillary.

The preceding results give third order significance for a real parameter in a general
model context. For some examples see Fraser & Reid (1995) and Fraser, Monette, Ng
& Wong (1992). The examples include generalized linear models but the method applies
more generally needing only the determination of the effects of a parameter change on the
individual coordinates of the model.

In Section 2 we summarize relevant formulas for third order significance. In Section 3
we discuss the minimum information needed concerning a third order ancillary. In Section 4
and 5 we discuss third order significance for the normal and non-normal regression models.
Examples are given in Section 6.

The statistical analysis of nonlinear regression models was examined by Beale (1960)
using differential geometry and extended in work by Guttman & Meeter (1965), Bates &
Watts (1980,1981), and Hamilton, Watts & Bates (1982). In particular, Bates & Watts
(1980) contributed significantly by identifying the two orthogonal components of the second
derivative array £gg(f), the intrinsic curvature that relates to the geometry of the model
and which is invariant to reparameterization, and parameter effect curvature that depends
on the parametrization of the model. For normally distributed errors, Bates & Watts
(1980) proposed two measures of nonlinearity directly related to the maximum relative

intrinsic curvature and maximum relative parameter effects curvature, respectively. The
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measures were extended to a general nonlinear model context in Amari (1982) and Kass
(1984) (see also Cook and Witmer, 1985).

Second order inference for nonlinear regression models was treated in Hamilton, Watts
& Bates (1982), Hamilton (1986), and Fraser & Massam (1987). The analyses by Hamilton,
Watts & Bates (1982) and Hamilton (1986) are based on approximating the response
surface by a tangent surface to the second order. Fraser & Massam’s (1987) analysis is
related to a conditional testing procedure developed in Fraser & Massam (1985) in which
two levels of conditioning were introduced: one for the data direction and the other for
the distance from data point to the response surface. For normal errors, they use the

Fisher-von-Mises distribution in place of x? to assess observed departure.
2. BACKGROUND

Consider a statistical model f(y;6) and an observed data point 4° and suppose the
model has asymptotic properties (for example, DiCiccio, Field & Fraser, 1990; Fraser
& Reid, 1993a) as some parameter n, say sample size, becomes large; let £(6;y) be the
log-likelihood function.

If y and 6 are scalar, a tangent exponential model (Fraser & Reid, 1995)

7 PO ) — L) + (o = @)s} 12 ds (2.1)

gives an O(n~3/2) approximation to first derivative at 4° and an O(n~"!) approximation
generally (within a compact set for the standardized variable); for this, ¢ is a locally

defined canonical parameter, s is the corresponding score variable,

o = p(6) = d%e(e; Wl = £y(0:5°) (2:2)

0
s=s(y) = %3(9;1/)@0 = £,(0% ),
and j is the observed information for ¢ from the likelihood in the exponent of (2.1); for

convenience we assume that ¢ is locally increasing in 6, otherwise we reverse the sign
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of y. The nominal parameter ¢ appears in this as a computational device to obtain the
significance approximation.

Fraser & Reid (1993) show that the distribution function for the exponential model
(2.1) coincides with that for the given model to order O(n_3/ %) at the data point y; let
£°(0) = £(0;4°) be the observed log-likelihood function. The significance function p°(6) =
P(é\ < oY, ) can then be obtained from the exponential model formula of Lugannani &
Rice (1980),

P(0) = () + 6(r) (5 = ) + O™ (23

r

where 7 is the signed root of the log likelihood ratio
9o 00 0 1/2
r = sgn(6° — 6) - [2{z @) — ¢ (9)}] , (2.4)

q is the standardized maximum likelihood departure on the ¢ scale

a=(2°—)iyZ, (2.5)

Joe 18 the observed information for ¢ at the data point, and ¢(z), ®(z) are the standard
normal density and distribution functions. The r* formula of Barndorff-Nielsen (1986,1991)

provides an alternative approximation to the significance function
p°(0) = &(r*) + O(n=*/?) (2.6)
where the corrected likelihood ratio 7* is defined using (2.4) and (2.5),
r* =r —r~tlog(r/q), (2.7)

and has a standard normal distribution to order O(n~=3/2). The two approximations (2.3)
and (2.6) use the same 7 and g; we find it convenient to use the notation p°(0) = ®(r, q) for

either. For contrast, two common first order approximations to p°(6) are given by ®(r) and
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®(u) where 7 is the signed root of the log likelihood ratio as above and u = (6 — 9)3619/2 is

the standardized maximum likelihood departure based on the original parameter 6 rather
than on the pseudo parameter ¢ as in (2.5).

If y and @ are vectors of dimension p, then (2.1) still applies with (27)'/2

replaced by
(2m)P/2 and with ¢ and s treated as row and column vectors. For this we take s as defined

in (2.2) where ¢ is the sample space gradient of the likelihood function,

0

p=9(0)= a—y,f(Q;y) = %5(0;,@) ) (2.8)

y0 Yy
at the data point y°. The final expression with differentiation with respect to p basis
vectors V = (v1,...,vp) will be used in the presence of an ancillary where the vectors V
are tangent to the ancillary at the data point, that is, £(V') is the tangent plane to the
ancillary surface at the data point. For computation, any affinely equivalent version of ¢
can be used; this amounts to a relocation and change of basis vectors which does not affect
the value of the expression (2.1). Then, for testing a scalar interest parameter ¢ where
6 = (¢, A), a generalization of approximation (2.3) is available. Let r now be the signed

root of the profile log likelihood ratio

~ ~ -~ ~ 1/2

r=sgn(® — ) - [2(°Q°, %) — LR, )} (2.9)
where 5\2) is the constrained maximum likelihood estimate with ¢ fixed. It is straight-
forward to find a scalar linear function x(6) = > a;p;(0) of ¢ with >~ a2 = 1 such that
dx = 0 is equivalent to dyp = 0 at (/):1/,,1/)) and increments positively with respect to ¢
at that point; this can be interpreted as a sample space gradient of the profile likelihood.

Then p°(¢p) = P({p\ < zZO; ) is given by (2.3) with r now defined by (2.9) and ¢ replaced

by
_ _ J1/2 F1/2
Q= {X(e ) - X(ezp)} ) 11]/2 =M 11J/2 (2'10)



where the full and nuisance informations, J;, and J,_1, are calibrated on the ¢ scale,

Tp = lipe(00)| = |iaa(8°)[|9er ()72, Jpe1 = iaa (B3] (83) 72 (2.11)

and g is the Jacobian

dp(0)

we (0) = 507

(2.12)

for the parameter transformation to ¢ from #. The determinant of the (p — 1) X p matrix
@x = A is defined by |A| = |AA’|/2. The quotient calculation of information in (2.10)
takes account of marginalization over the nuisance parameter distribution. For details see

Fraser & Reid (1995).
3. ANCILLARY DIRECTIONS AT THE DATA POINT
Consider the nonlinear regression model

yi = ni(0) + e (3.1)

where 7;() is a smooth real-valued function of § = (Aq,---,Ap—1,%) and the e; are inde-
pendent with error density f;(e;). We assume here that the error scaling is known; the
more general case with unknown error scaling will be discussed elsewhere. We also assume
that the coordinates of the parameter have been defined and reordered so that the inter-
est parameter 1 is the last coordinate. Each coordinate is already in location form with
respect to its main parameter 7);.

Now consider the effect of a § change on the full variable y at y°; the vector directions
for data change at y° that correspond to parameter change from 8° to 8° + df are given

by the n x p matrix X, = Xp(@\o) = (x1,...,Tp), obtained from

an(0) on(0) 3?7(9)}
O T N1 0y S

X,(0) = ns(0) = §
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which records p tangent vectors to the regression surface at the maximum likelihood value.
These tangent vectors X, at the data point y° generate a plane parallel to the tangent
plane at the maximum likelihood point 7° = 77(50). As defined, the tangent vectors at
the data point correspond to a first order ancillary, but analysis in Fraser & Reid (1993b)

shows they are also tangent to a second order ancillary. For later use we also define

Kpes) =m0 = {0 JH0

4. TESTING v WITH NORMAL ERROR

We now apply the asymptotic results from Section 2 to the nonlinear regression model
in Section 3, and for the moment restrict attention to the case of normal error with common
variance 03. The more general case with non-normal error and fixed scaling is discussed
in Section 5.

First we derive the canonical parameter (2.8) of the tangent exponential model. The
parameter is constructed by differentiating likelihood in the ancillary plane directions at

the data point; using the vectors X,, we obtain the corresponding nominal parameter as

d;j(p [_2}78 > Avi- "71'(9)}2} oo O_ig(n(ﬁ) — %) Xp; (4.1)

for simplicity we choose the affinely equivalent canonical parameter
0(0) =n'(0)X, (4.2)

which gives coordinates for 7n(f) as projected to the tangent plane relative to dual basis
vectors; this parameterization has been examined by Hamilton, Bales & Watts (1982).
Some geometrical simplicity is obtained if X,, in (4.2) is replaced by a set of orthonormal

vectors that span the linear space generated by X,.
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Next we determine the scalar parameter x = > a;p; that gives the same local pa-
rameterization as ¥ does in the neighbourhood of the parameter value 51%; for a related

parameter see Hamilton (1986). Using Jacobian

dp(6)
20y _ 99
SOGI(H’LP)_ 89/

= X;(03)%,

90
P
at 52), we can write dp = (d, dlp)(pgr(@?}) , and thus obtain di = dip ¥ (@\ ) where ¢'% (9 )

is the final column of {(,09!(53)}_1 . Thus

x(0) = p(O)wp , wp = ——=—, (4.3)

and w,, is the unit vector such that the new coordinate x(6) has a surface tangent to the
surface for v at 52,

Now consider the testing of a value for the parameter . The signed likelihood ratio
is

r=sen(@ - 0) [ S0 - m@P - S - w@¥] @

The parameter component from (4.2) that is equivalent to di at @\3 gives the departure

M =sgn(9° — ) - [{p(0°) — @(03) }w,|; (4.5)

for use in (2.10). This is the tangent plane departure perpendicular to the submodel at its

maximum likelihood value. The related information expressions from (2.11) are

1 —2
Tyt = sy o) — udmoa @) + X1 @)X )| [, B X,
0

0 (4.6)

Jp =

(0°) — y2 Yo (0°) + XL X ‘ ‘X’X ‘
0

where 7;x2(0) and 7,99 are the second derivative matrices of 7;(f) with respect to A
and 6 = (A, %) respectively. Then the third order significance for testing 1 is given by
(2.3) using the signed likelihood ratio r from (4.4) and standardized maximum likelihood
quantity Q@ = M (J,/Jp_1)*/? from (4.5) and (4.6).
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5. TESTING ¢y WITH NON-NORMAL ERROR

Much of the simplicity of the normal error case follows from the canonical parameter
being given by the projection of the regression surface to the tangent plane at the maximum
likelihood point. More generally it seems appropriate to work directly from likelihood.

Consider the regression model (3.1) with known error components f;(e;) and let
2;(e;) = log fi(e;). Then the observed likelihood is

n
Z gz - "77, ) (51)
1=1

and the locally defined canonical parameter is the row vector
Zmz —ni(60)) X5 (5.2)

where m;(y) = dl;(y)/dy and X(;) is the ith row of the tangent plane vector array X (50)
from (3.3).

For testing a value for ¢ in 6 = (), ), the signed likelihood ratio is given by (2.8),
and the standardized maximum likelihood departure @ is given by (2.10) with (2.11),
where the parameter x = x(0) = ¢(0)w, is defined by (4.3) with ¢’ () = {pe ()} ! and
o (0) = 0p(6)/00" as obtained from (5.2). The third order significance for testing 1 is

then obtained from (2.3) with the r and @ as just described.

6. EXAMPLES

For linear regression with normal error and known scaling the present method repro-
duces the usual normal analysis. For linear regression with non-normal error components
the present methods reproduce the main approximation in DiCiccio, Field & Fraser (1990),
but have the computational advantage of being directly and simply expressed in terms of

likelihood. Both these normal and non-normal analyses in the literature are restricted to
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the case of canonical or linear parameters. If we generalize from the case with canonical
or linear parameters, we typically lose the sufficiency or conditionality reduction needed

for the methods in the literature.

For the general case of nonlinear regression there are several issues concerning the
calculation of approximate significance for a scalar component parameter 1. First, there
is the need for an approximate ancillary, a need attributable to the nonlinearity of the
regression surface. Second, there is the effect of non-normality, if present, on the calcu-
lations; for this, the examples in DiCiccio, Field, & Fraser (1990) indicate high accuracy
corresponding to the likelihood based approximation here. Third, there is the effect of
curvature in the interest parameter ¢). Our primary concern then is to illustrate the first
involving the construction of an ancillary and the third involving the presence of curvature

in the interest parameter .

The first three examples consider the effect of the construction method for the ap-
proximate ancillary and the effect of curvature in the interest parameter; in each case
for comparison purposes there is an exact ancillary that allows the computation of exact

significance values.

Example 1. We first consider a scalar interest parameter o with no nuisance parameter
in the context of an exact ancillary: Fisher’s normal distribution on the circle. The model
is y1 = pcosa + e1,ys = psina + e where e; are independent standard normal. We

consider inference for a with p assumed known.

The normal distribution is centered on a circle of radius p on the plane. Let (c,a)
be new variables defined by y; = ccosa, yo = csina. Then ¢ has the noncentral chi
distribution on 2 degrees of freedom with noncentrality parameter p, and (a — «) given
c is von Mises with precision k£ = ¢p. Fisher (1957) recommended using the conditional

distribution given c, as c is ancillary. The approximate ancillary direction of Section 3 is
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tangent to this exact ancillary at the data point.

The signed root of the profile log likelihood ratio for testing « is

r = sgn(a — a)[2cp{1 — cos(a — a)}]*/?

The maximum likelihood departure using the tangent exponential model is M = sin(a—«),
which gives the standardized departure Q = M(cp)'/2. The third order significance level

for testing a is ®(r, Q).

The exact significance level for testing o is G,(a — ) where G;(a) is the distribution

function on (—m, ) for the von Mises (k) distribution with density

1

1) = et

exp(k cosa)

where I is the Bessel function of order zero.

Table 1 compares the approximation with the exact value for various values of (cp)l/ 2,

For larger values of this quantity the approximation is quite good but for smaller values
it degrades near the endpoints —m and 7 of the distribution. This degradation in the
approximation was noted in a different context in Barndorff-Nielsen (1990) and is roughly
attributable to the wrap-around nature of the support of the distribution in comparison

with the full real line implicit in the asymptotic analysis.

Table 1: Values of the approximate formulas LR(2.3) and BN(2.6) in comparison with the

exact distribution function for various angular departures a — a.
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(cp)/? =2

a—« —1.5 —1.0 —0.5 —0.2
LR(2.3) 0.004504 0.032188 0.169107 0.349455
BN(2.6) 0.004501 0.032185 0.169106 0.349455

Exact 0.004932 0.033226 0.170512 0.350225

(cp)/? =5

a—« —1.0 —0.5 —0.2 —0.1
LR(2.3) 9.34879 % 10~ 7 0.006922 0.160277 0.309492
BN(2.6) 9.34879 % 10~ " 0.006922 0.160277 0.309492

Exact 9.37596 % 10~ 7 0.006927 0.160300 0.309509

(cp)'/? =8

a—« —0.5 —-0.3 —-0.2 —-0.1
LR(2.3) 3.87098 x 1075 0.008509 0.055445 0.212405
BN(2.6) 3.87098 x 1075 0.008509 0.055445 0.212405

Exact 3.90059 * 1075 0.008510 0.055449 0.212409

Example 2. Consider again the standard normal distribution on the plane with mean
(pcosa, psina). We examine « as the interest parameter with nuisance parameter p.

With a specified value for o the mean lies on the ray {(pcosa, psina) : p > 0} from
the origin. As a manifold, this has a boundary point at the origin and most third order
asymptotic methods do not address such singularities; we avoid this issue here by allowing
p to be positive and negative.

Let £1 = y1 cos a+ya sin «, £9 = —y1 sin @+ y3 cos . In terms of (x1, x2) we have that
x1 is sufficient for the nuisance parameter p and has the normal (p, 1) distribution; and x4
is ancillary and has the normal (0, 1) distribution. The obvious assessment for departure
from «, which is free of the nuisance parameter p, is to examine x4 or x4 given xp; the
ancillary construction of Section 3 reproduces this conditioning. Since x; has a normal

(0,1) distribution, The exact significance for « is thus

p(a) = ®(z2) = (—y1sina + yacosa) . (6.1)

and the approximation of Section 4 reproduces this distribution, as we have r = QQ = z,.
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Note that the test procedure involves only the specified value for o and takes no
account of the form of the interest parameter otherwise: it uses only the particular line
through the origin at angle @ and no information on the partition of the parameter space
generated by other values of the interest parameter. This happens generally with the

present third order methods.

Example 3. Consider again the standard normal distribution on the plane with mean
(pcosa, psina). We now examine p as interest parameter with o as nuisance parameter.

As in Example 1 let (¢, a) be defined by y; = ccosa, ya = csina: ¢ has the noncentral
chi distribution with noncentrality parameter p, and the conditional distribution of (a — «)
given c is Von Mises with Kk = cp. We thus have a marginal variable ¢ measuring departure
for p and a conditional variable a given c that measures the nuisance parameter. The exact

significance for p is thus

p(p) = Gp(c) (6.2)

where G, is the distribution function for the noncentral chi distribution (p) with 2 degrees
of freedom.

The signed root of the profile log likelihood ratio for testing p is
r=c—p. (6.3)

The maximum likelihood departure is M = ¢ — p. The full information J, = 1 and the

nuisance parameter information at (p, @,) is cp which gives

Ji=cp-p P=c/p (6.4)

when calibrated to the canonical parameterization. Thus

1/2

Q=(-n’ (6.5)
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The third order asymptotic significance level is then ®(r, Q) using (2.3) or (2.6) with (6.3)
and (6.5).

Table 2 compares the approximate ®(r, Q) to the exact G,(c). It should be noted that
this corresponds to examining the asymptotic method for an n = 1 case. The approxima-

tion is very good for ¢ > p but less accurate for small r near the centre of curvature.

Table 2: Values of the approximate and exact distribution function for ¢ with a noncentral

chi distribution with noncentrality parameter p.

p=2
c 1 3 ) 8
LR(2.3) 0.087783 0.786963 0.997791 1.000000
BN(2.6) 0.087059 0.787352 0.997795 1.000000
Exact 0.081892 0.785638 0.997779 1.000000
p=>
c 3 6 8 11
LR(2.3) 0.016665 0.818249 0.998258 1.000000
BN(2.6) 0.016680 0.818282 0.998259 1.000000
Exact 0.016616 0.818150 0.998257 1.000000
p=2_8
c 6 9 11 14
LR(2.3) 0.019133 0.826666 0.998395 1.000000
BN(2.6) 0.019136 0.826675 0.998395 1.000000
Exact 0.019124 0.826640 0.998394 1.000000

Example 4. A nonlinear regression model discussed by Gallant (1975b, 1987) has the

response function

1(0; 21, To, 23) = 01 + Oaxq + Hze?472

where x; is an indicator variable for group 1 or 2. In the treatment group (z; = 1), the
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data for x5 and y are respectively
s = (6.28,9.11,8.11, 6.58, 6.52, 9.86, 0.47, 4.07, 0.17, 4.39, 4.73,8.90, 0.77, 4.51, 0.08)
y = (0.98610,0.95482,1.02324, 0.96263, 0.98861, 0.98982,0.66768, 0.96822, 0.59759,
1.01962, 1.04255, 0.97526, 0.80219, 0.95196, 0.50811)
and in the control group (z1 = 0) the data for 25 and y are
7o = (9.86,8.43,1.82,5.02, 3.75, 7.31,0.07, 4.61, 6.99, 0.39, 9.42, 3.02, 3.31, 2.65, 6.11)
y = (1.03848,1.04184,0.90475, 1.05026, 1.03437,1.01214,0.55107, 0.98823, 0.99418,

0.69163, 1.04343, 1.04969, 1.01046, 0.97658, 0.91840).

A familiar estimate of o2 is the mean square error, which in this example is 0.03049/26 =
0.00117; for the present analysis we use a normal model for the errors and take the standard
deviation to have the estimated value 0.00117/2.

The maximum likelihood estimate obtained by Marquart’s method is
b= (1.01567, —0.02589, —0.05049, —1.11600).

A parameter of particular interest is the decay rate ¢ = 64 with respect to age. We
calculate the third order significance based on the local ancillary developed in Section 3
and using the two approximation formulas LR(2.3) and BN(2.6). For comparison purposes
we also obtain the two first order significance values, ®(r) based on the signed profile, and
®(u) based on the ordinary standardized maximum likelihood departure defined after (2.7).
The third order analysis produces a standardized maximum likelihood pseudo parameter;
this lead also to a first order significance ®(Q)). We record these values for several values

of the interest parameter:

Table 3: First and third order approximations to the significance level for testing various

values of ¥ in Example 4.
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Wb o(r) ¥(q) ?(Q) LR(2.3)  BN(2.6)

—1.50 0.980771 0.991610 0.980683 0.980750 0.980750
—1.45 0.966407 0.981254 0.969866 0.966870 0.966870

—0.90 0.067725 0.089753 0.070099 0.068789 0.068789
—0.80 0.010266 0.024732 0.011821 0.010544 0.010544

In a plot of (r), ®(q), ®(Q), LR(2.3), and BN(2.6) against 3 the two third order formulas
coincide to graphing accuracy, and ®(r) and ®(Q) are close to the two third order formulas.

Testing for 9 is of particular interest analytically. If ¢ is specified the model becomes
an ordinary linear model, and the distinguishing feature of the present method lies in some
effective contribution of separating out one degree of freedom from error to measure the
departure from the specified ¢ value. Thus the contribution here is more to linear model

theory than to nonlinear model theory.

Example 5. A kinetics problem (Box & Lucas, 1959; Guttman & Meeter, 1965; Gal-
lant, 1987; Seber & Wild, 1989) has become very prominent in the nonlinear regression
literature, indeed Gallant (1987) calls it the standard pedagogical example. The response

function n(0; z) = C(z) is the solution of the differential equations

% A(z) = -0, A(x)

% B(gj) = -0 A(Jf) - 02B("B)
d

. C(z) = 02 B(x)

with boundary conditions A(x) = B(z) = C(z) = 0 at time z = 0, and with 6; > 6, > 0.

The response function is
n(0;z) =1 — (01 — 03) {01 exp(—02x) — O3 exp(—0b12)}

and is viewed (Guttman & Meeter, 1965) as being highly nonlinear.
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We examine a dataset of size 12, simulated by Guttman & Meeter (1965) using normal

error with standard deviation 0.025 and with § = (1.4,0.4):

1 2 3 4 ) 6
0.137790 0.409262 0.639014 0.736366 0.786320 0.893237

(b) -
Yy 1 2 3 4 5 6

0.163208 0.372145 0.599155 0.749201 0.835155 0.905845

We take 0, to be the interest parameter and #5 to be the nuisance parameter.

For a first analysis we use a normal model with the given value oy = 0.025 for the
error scaling. The modified Gauss-Newton method gives the maximum likelihood estimates
X = 0, = 0.456427, ¢ = 6, = 1.145483. We record the third order significance LR(2.3)
and BN(2.6) for four selected values of ¢ = 6;. We also record the first order significance

values ®(r), ®(q), (Q) as discussed in Example 4.

Table 4: First and third order approximations to the significance level for testing various

values of ¥ = 67 in Example 5.

b a(r) 3(q) 3(Q) LR(2.3)  BN(2.6)

0.93 0.828671 0.826459 0.830596 0.830799 0.830799
0.94 0.817560 0.815042 0.819381 0.819768 0.819768

1.61 0.037121 0.021335 0.039354 0.037815 0.037815
1.62 0.034555 0.019200 0.036745 0.035211 0.035211

In a plot of ®(r), ®(¢), (Q), LR(2.3), and BN(2.6) against ¢ = 6; we find that
the third order formulas coincide to graphing accuracy. A 95% confidence interval for 1
obtained from the third order analysis is (0.7313, 1.5703) which can be compared with the
intervals (0.7263, 1.5678), (0.7685, 1.5225), (0.7388, 1.5748) from the first order approxi-
mations for r, ¢, and Q.

For a second analysis we use a Student (6) error distribution rescaled by the factor

1.0903 so that 68.26% of the probability lies in the interval (—1,+1); the scaling factor oy =
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0.025 is then applied to the preceding standardized Student distribution. For background
details see Fraser (1976): the corresponding analyses tend to be close to the normal analysis
if the errors are normally distributed, and are correct if the errors are from the Student
(6).
The modified Gauss-Newton method gives the maximum likelihood estimates as A=
@\2 = 0.466659, 1/p\ = (9\1 = 1.100710. We record significance values for selected 1) values
Y D(r) D(q) ?(Q) LR(2.3) BN(2.6)

0.93 0.781095 0.781381 0.782261 0.783025 0.783025
0.94 0.767934 0.767720 0.769051 0.770098 0.770098

1.61 0.023010 0.010234 0.040180 0.026863 0.026860
1.62 0.021343 0.009060 0.038367 0.025005 0.025002

In a plot of ®(r), ®(q), ¢(Q), LR(2.3), and BN(2.6) against ¢ = 6;, the two third order
formulas coincide to graphing accuracy. And with this non-normal analysis we find that
®(r) and ®(Q) are not particularly close to the two third order formulas. An interpolated

10% confidence upper bound for v from the third order analysis is 1.5219.
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