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ABSTRACT

Bayesian and frequentist methodologies when applied to the same model–data infor-
mation can lead to different statistical inference results. A prominent example involves a
rotationally symmetric normal error distribution located at an arbitrary point (θ1,θ2) on the
plane. The radial distance ρ = (θ2

1 + θ2
2)

1/2 from the origin has a Bayes posterior survival
value s(ρ) that is uniformly greater than the frequentist p-value p(ρ), can be expressed
in terms of the noncentral chi-square distribution function with 2 degrees of freedom, and
can attain 8 percentage points when ρ̂ = 5. We use this Bayes–frequentist difference as a
reference to explore the Bayesian bias attributable to parameter curvature.

For this, we consider a two parameter regular statistical model and define a curva-
ture measure for an interest parameter; the curvature measure is a mofication of the Efron
measure and targets Bayesian adjustment rather than departure from the information lower
bound as considered by Efron. Examples are given and simulations are provided.

KEYWORDS

Bayes; Asymptotics; Inference; Curvature corrections; Conditioning; Default priors.

2000 Mathematics Subject Classification: 62F15; 62F12.

1 Introduction

Bayesian and frequentist methodologies applied to the same model-data information can
lead to quite different inference statements. This has been discussed intermittently in the



literature: for example David, Stone & Zidek (1973) examined Bayesian and confidence
distributions and found that marginalization to a component parameter can quite widely
give results in conflict with a direct analysis of the component parameter; Stainforth, Allen,
Tredger & Smith (2007) discussed two comprehensive weather models that give quite dif-
ferent results with comparable analyses; Fraser (2009) examined a model asymptotically
close to normality and found that no Bayesian analysis could reproduce the usual confi-
dence results to third order accuracy.

The prominent example for such discrepancies involves two independent normal vari-
ables y1,y2 with means θ1,θ2 and say common variance equal to 1. A parameter ρ =
(θ2

1 +θ2
2)

1/2 whose contours have apparent curvature has a direct p-value p(ρ) = H2(r2; ρ2)
using r2 = y2

1 +y2
2 where H2(r2; ρ2) is the distribution function of the noncentral chi-square

distribution with 2 degrees of freedom and noncentrality ρ2. This is the elementary p-value
calculation that records the percentage position of the data value with respect to the distri-
bution with parameter value ρ2; in repetitions, the corresponding confidence lower bound
θ̂β(y1,y2) has repetition accuracy β.

The variable (y1,y2) has of course the obvious location invariance assumed by Bayes
(1763) and leads to the posterior that (θ1,θ2) is Normal {(y1,y2); I}; the marginal dis-
tribution for ρ2 is the noncentral chi-square with degrees of freedom 2 and noncentrality
r2 = y2

1 + y2
2, and the resulting Bayes posterior survival value is s(ρ) = 1−H2(ρ2;r2); this

is strictly larger than p(ρ) and the difference s(ρ)− p(ρ) can attain the value 8% with
ρ̂ = r = 5; for some details see Fraser & Reid (2002) and Fraser (2009); and a plot of the
discrepancy

D(ρ, ρ̂) = s(ρ)− p(ρ) = 1−H2(ρ2, ρ̂2)−H2(ρ̂2,ρ2)

with ρ̂ = 5 is recorded in Figure 1. We view the parameter curvature as illustrated in this
simple example to be the central source of the discrepancies coming from the use of the
Bayesian approach with default priors; for further discussion see Fraser (2009).

In Section 2, we give a brief overview of Efron’s definition of parameter curvature,
which is defined primarily for exponential models. We then discuss how recent likelihood
asympotics shows that to the second order exponential and location models can be viewed
as differing in just their parameterization. And we argue that for inference curvature should
be defined using the location model framework.

In Section 3, we discuss the parameter linearity examined in Fraser, Reid, Marras & Yi
(2009) and define a measure of curvature for a scalar interest parameter ψ in the presence of
a scalar nuisance parameter λ; the full parameter can then be presented as θ = (ψ,λ). The
measure of curvature γ depends on the data say y and is recorded as γ = γ̂ = γ(ψ̂), and its
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Figure 1: Bayesian discrepancy D(ρ, ρ̂ = 5)

reciprocal is the corresponding radius of curvature ρ = 1/γ. For the example we have γ̂ =
0.2, with reciprocal the radius of curvature ρ̂ = 5. This measure of curvature is calculated in
relation to how the parameter affects the sample space near the observed data, and it agrees
with the curvature measure of Efron (1975) in the case of a normal location model. More
generally it relates to a linearity or additivity on the sample space rather than linearity or
additivity for the log-density as in Efron (1975). The present definition addresses the role
of Bayesian analysis while the Efron definition focuses on the availability of uniformly
most powerful test. Section 5 and 6 discuss a familiar example in substantial detail. For an
exponential model a corresponding canonical parameter is linear in the Efron sense, while
for a location model a corresponding parameter is linear in the present modified sense.

2 Defining parameter curvature

For the simple location normal on the plane discussed in Section 1 we obtained a curvature
γ = 0.2 for the parameter ρ. This curvature measure however does not in general agree
with a prominent definition of curvature in the literature. Efron (1975) defined parameter
curvature with primary reference to an exponential model. In this paper, we propose a
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Figure 2: Normal{(y1,y2);(θ1,θ2), I)} on the plane. Data point y0 = (y0
1,y

0
2) = (r0,0)

for convenience on the first axis. Parameter contour ρ = ρ̂ = r0 through the data point.
Increasing values of ρ are to the right with center of curvature to the left and curvature
γ = 1/ρ where ρ is the radius of curvature. As pictured, the curvature is 0.2 = 1/ρ̂0 = 1/5.
Positive curvature reads as inflated posterior probability. If we evaluate at the mle ρ̂0 = 5,
we obtain s(5) = 0.54009839 and p(5) = 0.45990161 with discrepancy 0.08019677.

modified measure of curvature having primary reference to a location model.
First consider a curve y = y(x) on the (x,y) plane. If yx(x) = (d/dx)y(x) = 0, the cur-

vature γ(x) = yxx = (d2/dx2)y(x) is the second derivative at the point x and its reciprocal
ρ(x) = 1/γ(x) is the radius of curvature of a circle that has first and second degree agree-
ment with the given curve, that is, fits the given curve to second order at x where yx(x) = 0.
Standard geometry then shows that the curvature at a general point x is

γ(x) =
yxx

(1+ y2
x)3/2

with a sign for γ(x) possibly based on curvature to the left or to the right relative to a
chosen direction on the curve. Alternatively, if the curve of interest is given implicitly as
g(x,y) = c, then the curvature can be written as

γ(x,y) =
gxxg2

y−2gxygxgy +gyyg2
x

(g2
x +g2

y)3/2 .
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For some discussion see Efron (1975).
If the scaling for x and y is changed then the curvature will change in a corresponding

way. Thus when examining the curvature of a parameter the local scaling will typically
be derived from the model based on an expected or observed information matrix. The
expected information for θ is

iθθ(θ) = E


 −`θ1θ1(θ;y) −`θ1θ2(θ;y)

−`θ1θ2(θ;y) −`θ2θ2(θ;y)

 ; θ


and the parametric distance ds from (θ1,θ2) to (θ1 +dθ1,θ2 +dθ2) is obtained from

(ds)2 =

 dθ1

dθ2

′ iθθ(θ)

 dθ1

dθ2

 (2.1)

If observed information is used then recent likelihood theory suggests the use of the data-
defined canonical parameter ϕ(θ) for a reference exponential model:

ϕ(θ) =
d

dV
`(θ,y)|y0 ,

where V = (v1,v2) records two vectors tangent to a second order ancillary, usually available
as V = dy/dθ|(y0;θ̂0) where y = y(x,θ) is the full vector quantile function derived from
independent coordinate distribution functions and x has a null or reference distribution
corresponding to y at say some θ0. See Fraser, Reid & Wu (1999).

Efron (1975) works from an exponential model

g(s;ϕ) = exp{s′ϕ(θ)−κ(ϕ)}g(s)

where reduction from original data to the canonical variable (s1,s2) involves a natural use
of sufficiency. For such a model, an alternative parametrization is given by τ1

τ2

= E


 s1

s2

 ;ϕ

=
∂

∂ϕ
κ(ϕ) = κϕ(ϕ)

with the final expressions available from the familiar Mean-score-equal-zero relationship.
The corresponding variance matrix is

var


 s1

s2

 ;ϕ

= κϕϕ(ϕ) = iϕϕ(θ)
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which is the Hessian matrix obtained by twice differentiating the underlying cumulant-
generating function, which is the function κ(ϕ). This is the information matrix for the
parameter ϕ(θ).

Now consider a scalar parameter sub-model obtained by having ϕ(α) expressed as a
function of the scalar parameter α. It follows then that the mean parameter is also a function
of α  τ1

τ2

= κϕ(ϕ(α))

The Efron (1975) curvature of this scalar parameter model is defined to be the curvature of
the expectation curve {τ(α)} calculated with respect to information scaling; it follows that

γ(α) =
|M(α)|1/2

ν
3/2
11 (α)

=

∣∣∣∣∣∣ ν11(α) ν12(α)

ν12(α) ν22(α)

∣∣∣∣∣∣
1/2

ν
3/2
11 (α)

where
ν22(α) = ϕ

′
αα(α)iϕϕ(α)ϕαα(α)

ν11(α) = ϕ
′
α(α)iϕϕ(α)ϕα(α)

ν12(α) = ϕ
′
α(α)iϕϕ(α)ϕαα(α);

the determinant can be viewed as the variance of an acceleration vector orthogonalized to
a tangent velocity.

Example 2.1. Bivariate normal (Efron). Let y be bivariate normal with mean (ϕ1,ϕ2) and
variance I and consider the sub model with mean vector

ϕ(α) =

 ϕ1(α)

ϕ2(α)

=

 α

(γ0/2)α2


dependent on the scalar parameter α. Then

ϕα =

 1

γ0α

 , ϕαα =

 0

γ0



M(α) =

 1+ γ2
0α2 γ2

0α

γ2
0α γ2

0
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γ(α) =
γ0

(1+ γ2
0α2)3/2

giving γ(0) = γ0 which is just the ordinary curvature of the mean vector at the origin, a
consequence of location normality with identity variance.

Recent likelihood asymptotics examines the form of the log density of a statistical
model and uses the data accretion rate O(n) that is applicable to the log density itself and
also to the related coefficients of its Taylor expansion about an observed data point; see
for example, Andrews, Fraser &Wong (2005) and Cakmak, Fraser, McDunnough, Reid &
Yuan (1998). From this, it is found that the model to second order can be written as an
exponential model or as a location model and that an O(n−1) adjustment can convert from
one to the other; the adjustment can be shown to correspond to reexpression of the variable
and reexpression of the parameter.

We use recent results from default priors theory concerning location parameterizations
to develop a curvature measure that references location model properties. We do not obtain
this measure in an explicit form but rather as a computational algorithm. An explicit for-
mula would be appealing but the algorithm has some advantages in explaining more clearly
the basis of the definition and its advantages. We address this in the next section.

3 Parameter effect: Linearity and curvature

We have noted in the preceding section that a model can be written in exponential form
or written in location form to second order by just reexpression of the variable, and reex-
pression of the parameter; and to measure curvature, we have from the literature, the well
defined Efron curvature measure which is appropriate with the exponential type form. We
now address the need for a curvature measure that is based on the location type context.

First consider the location model f (y1 −ψ,y2 − λ) on the (y1,y2) plane with data
(y0

1,y
0
2). If we view the parameter ψ as being of primary interest, we might examine the

marginal density for y1 and then find that it depended only on ψ and was thus free of λ

f (y1;ψ) = f1(y1−ψ)

where f1(t1) =
R

f (t1, t2)dt2. We might then speak of ψ as being linear as opposed to
curved. How can this be generalized?

For this we draw on results from default priors in Fraser, Reid, Marras & Yi (2009) and
ancillary statistics in Fraser, Fraser & Staicu(2009). We assume a model with asymptotic
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properties and with continuous differentiability with respect to the variable and the param-
eter. Then to go beyond the pattern indicated by large sample likelihood theory we would
seem to need a parameter–variable connection of the type provided by a pivotal quantity.
We generalize this and with independent coordinate distribution functions use the quantile
functions to express the parameter–variable relationships. We can then write (Fraser, Reid,
Marras & Yi, 2009)

dθ̂ = W (θ)dθ, dθ = M(θ)dθ̂ (3.1)

where W (θ) and M(θ) = W−1(θ) are p× p matrices that show how change dθ̂ at the ob-
served data y0 relates to change dθ at an arbitrary θ value, as calculated to second order;
for this we have

W (θ) = ĵ−1H ′V (θ)

where ĵ is the observed information matrix,

H ′ = `θ;y(θ̂0;y0)

is the gradient of the score function at the observed data, and

V (θ) =
dy
dθ

=
d

dθ
y(x;θ)

∣∣∣∣
y0

(3.2)

is the derivative of the quantile function at the observed data; the reference variable x could
be the corresponding estimated p-value vector or an equivalent variable.

Example 3.1. Normal linear regression. Consider a sample from the standard linear re-
gression model y = Xβ + σz where z is a sample from the standard normal and X has full
column rank and θ = (β′,σ2). Then

V (θ) =
dy
dθ

∣∣∣∣
y0

= {X ,z0(θ)/2σ}

where z0(θ) = (y0−Xβ)/σ is the standardized residual; and the likelihood gradient `;y =
(Xβ− y)/σ2 gives the score gradient

H = (X/σ̂
2, ẑ0/σ̂

3)

where σ̂0 is written just σ̂ for convenience; and ĵ = diag{X ′X/σ̂2,n/2σ̂4}. Together these
give

W (θ) =

 I (β− β̂0)/2σ2

0 σ̂2/σ2

 (3.3)
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with inverse

M(θ) =

 I −(β− β̂0)/2σ̂2

0 σ2/σ̂2

 (3.4)

Now suppose we have θ = (ψ,λ) and wish to examine the linearity or curvature of ψ

at the data point y0. For this we use more than likelihood: we use the direct parameter
effect at the data y0 as described by the Jacobian matrixes W (θ) and M(θ). The maximum
likelihood value θ̂0 = (ψ̂0, λ̂0) provides a reference value and for change with ψ = ψ̂0 held
fixed we examine how dλ at λ̂0 affects the data point; we obtain

dθ̂ =

 w11(θ̂0) w12(θ̂0)

w12(θ̂0) w22(θ̂0)

 0

dλ


=

 w12(θ̂0)

w22(θ̂0)

dλ.

We then examine how this data change dθ̂ from (ψ̂0, λ̂0) to (ψ̂0, λ̂0)+dθ̂ affects the param-
eter at various θ, by using the inverse relationship dθ = M(θ)dθ̂. If in moderate deviation,
we have that this dθ produces no ψ change, then we have linearity. If however there is ψ

change then we can use the generalized curvature measures from the proceeding section
and obtain our new sample space–based measure of curvature.

4 An example illustrating curvature

The Normal {(θ1,θ2); I} example exemplifies the location invariance used in Bayes (1763)
proposal for statistical analysis. To go beyond global location invariance and yet still, for
ease of calculation, have familiar normality we examine the case of sampling from the
Normal (µ,σ2) distribution and explore several scalar parameters of interest.

The curvature criteria proposed in Section 3 show that the interest parameters ψ =
µ, ψ = σ and ψ = µ + kσ have linearity; accordingly we use coordinate axes µ and σ and
thus have that a linear parameter is a straight line in the (µ,σ) coordinates. We then show
that the parameters ψ = µ/σ2 and ψ = µ + kσ2 have nonlinearity. Now consider this in
more detail.

Just consider linearity properties of the parameter ψ = µ + kσ for given k. To simplify
notation we take (µ̂0, σ̂0) = (0,1) without loss of generality due to location-scale properties
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of the model. We also for convenience take the parameter θ = (µ,σ) rather than the earlier
(µ,σ2); this requires a modification of W (θ) and M(θ) in (3.3) and (3.4) giving dµ̂

dσ̂

=

 1 −µ/σ

0 1/σ

 dµ

dσ

 (4.1)

 dµ

dσ

=

 1 µ

0 σ

 dµ̂

dσ̂

 (4.2)

Following Fraser, Reid, Marras & Yi (2009) we then consider a change (dµ,dσ) at θ = θ̂0

that leaves the parameter ψ unchanged; thus d(µ + kσ) = 0 or dµ = −kdσ at (0,1). From
(4.1) the corresponding increasement at θ̂ = (0,1) is dµ̂

dσ̂

=

 1 0

0 1

 dµ

dσ

=

 −k

1

dσ

giving dµ̂ =−kdσ̂. We then determine what this sample space change dµ̂ =−kdσ̂ implies
at a general point (µ,σ); from (4.2) we obtain dµ

dσ

=

 1 µ

0 σ

 −k

1

dσ̂

or
dµ
dσ

=
µ− k

σ

with initial condition (µ,σ) = (0,1). Integration of the equation gives µ− k = −kσ or
µ+ kσ = k. This shows that the quantile µ+ kσ is linear, and in particular that µ and σ are
linear.

Now we consider the parameter ψ = µ/σ2. Figure 3 records some contours for this
parameter together with an observed data point. The contours do look curved with respect
to µ and σ and they are still curved according to our current criteria; of course ψ = 0 is
special and corresponds to µ = 0 and does have linearity.

For illustration we consider a data point y0, with µ̂ = ȳ0 = 0.975442, σ̂ =
√

(n−1)/nso
y =

1.226137 and n = 3. Figure 3 records the contour of ψ = ψ̂ = 0.6488188 where ψ̂ is the
maximum likelihood value of µ̂/σ̂2; it also records the observed (µ̂, σ̂). The Bayes poste-
rior survival value s(ψ̂) is obtained by integrating the observed likelihood Lo(µ,σ) with an
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Figure 3: Some contours or level lines for the parameter ψ = µ/σ2 when µ̂ = 0.975442, σ̂ =
1.226137 and ψ̂ = 0.6488188. The contour of ψ̂0 goes through the data (µ̂0, σ̂0); The dotted
line records the linear parameter contour through (µ̂0, σ̂0).

appropriate weight function or prior π(µ,σ). This location scale normal example does not
fit directly with Bayes original location or translation analysis but an extended version can
be found in Jeffreys (1946). The original Jeffreys (1939) involved the prior σ−2dµdσ but
was modified in the later paper to the prior σ−1dµdσ = dµd logσ. For some current views
on these two priors see Fraser (2009). The modified Jeffreys prior has been found to have
acceptable Bayesian properties, provided the parameter of interest has the linearity defined
in Fraser, Reid, Marras & Yi (2009) and developed further here.
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Accordingly, for Bayesian inference, we have the posterior distribution.

π(µ,σ|y0)dµdσ = cLo(µ,σ)σ−1dµdσ

=
(s2)a

Γ(a)2a−1 σ
−ne−s2/2σ2

√
n√

2πσ
en(µ−ȳ0)2/2σ2

dµdσ,

where a = (n− 1)/2 = 1 and s2 = ∑
n
i=1(yi − ȳ0)2 = 4.510235. This posterior distribu-

tion can be presented in terms of generic variables, a standard normal variable z and an
independent chi variable χ with n−1 degree of freedom:

σ =
√

nσ̂
o
χ
−1, µ = µ̂− σ̂zχ

−1.

For the parameter ψ = µ/σ2 we do the integration numerically using software R over
the region of the parameter space to the right of various ψ contours,

s(ψ) =
Z

µ/σ2>ψ

cLo(µ,σ)σ−1dµdσ

and obtain the posterior survival plot for s(ψ) recorded in Figure 4. The preceding calcula-
tion represents standard Bayesian calculations; these are routine for the present parameter
ψ = µ/σ2 and are equally routine for other interest parameters. A typical modification
would use Markov chain Monte Carlo in place of the numerical integration, but N = 100
million simulations can typically give just second decimal accuracy; for such McMC sim-
ulations see Bédard, Fraser & Wong (2008) and for some related discussion see Fraser,
Wong, & Sun (2009).

There does not seem to be an obvious and immediate frequentist calculation to give
a p-value. This familiar common lack of an available frequentist procedure is a common
complaint from the Bayesian approach.

We do have however the higher order procedures available from recent likelihood
asymptotics. For the present interest parameter ψ we can calculate the signed likelihood
root r for assessing ψ and a special maximum likelihood departure q with nuisance infor-
mation adjustment.

r = sign(ψ̂−ψ)[2{`(θ̂o)− `(θ̂ψ)}]1/2

q = sign(ψ̂−ψ)|χ̂− χ̂ψ|

(
| jϕϕ(θ̂)|
| j(λλ)(θ̂ψ)|

)1/2

These involve the overall mle θ̂ and the constrained mle θ̂ψ as with the likelihood ratio
quantity, but also the full information jϕϕ for the canonical parameter (µ/σ2,1/σ2), the
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Figure 4: The posterior survival function s(ψ) for ψ = µ/σ2 for the given data; and the
third order p(ψ) for the same data.

nuisance information j(λλ) rescaled to the canonical parameter, and a canonical parameter
departure χ̂− χ̂ψ from the constrained maximum likelihood value. The third order p-value
for ψ is then

p(ψ) = Φ

(
r− 1

r
log

r
q

)
.

We do not verify here these third order p-values but refer to extensive simulations in the
literature that record high accuracy. Bédard, Fraser, & Wong (2008), Fraser, Wong & Sun
(2009), Fraser (1990), Fraser, Reid & Wu (1999) and Fraser, Reid & Wu (1999). The third
order p-value function is also plotted in Figure 4.

For our present data set and parameter ψ = µ/σ2 we see that p(ψ) > s(ψ) uniformly.
This equality is in the opposite direction from our introductory example in Section 1; and
not surprisingly we see that our parameter is concave to the right, the opposite from that in
Section 2.
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5 The example continued

We continue with our Normal (µ,σ2) example, with interest parameter ψ = µ/σ2 and data
µ̂ = 0.975442, σ̂ = 1.226137, ψ̂ = 0.6488188. The Bayes survival function s(ψ) and
the frequentist p-value p(ψ) are plotted in Figure 4; and they are different; and they are
different oppositely from what was found for the initial example in Section 1. And we have
attributed this opposite effect to the curvature; convex leading with increasing interest ψ in
the initial case and then concave leading with increasing ψ in the present example. We now
discuss this further and explore a global curvature measure and its consequences.

Our approach is to examine properties on the parameter space and to focus there on the
parameter of interest ψ. For this we have a 2 dimensional full parameter and a 1 dimen-
sional interest parameter; we restrict attention to this case following a similar restriction in
Efron (1975).

We can write the full parameter as θ = (µ,σ) in terms of familiar components, or as
ϕ(θ) = (ϕ1,ϕ2) = (µ/σ2,1/σ2) in terms of the exponential canonical parametrization. For
our present purpose, it would be helpful to be able to write it in a location–type parame-
terizations, say as (β1,β2) but what would be the basis for such a parameterization? Large
sample analysis (Cakmak, Fraser & Reid 1994) suggests that there is a location model as
in Section 1 but such does not address the regression type structure found with our present
Normal (µ,σ2) example; even with this change there are consequences that do not fol-
low the pattern seen with y1−ψ, y2−λ in Section 3; for some differential consequences
indicated by W (θ) and M(θ) see (3.1, 3.3, 3.4).

For a curvature measure we need to standardize the coordinates locally, as described
in Section 2. For our present example, we have an exponential model and the expected
information i(θ) is available as for the Efron curvature. More generally if we were to
work in moderate deviations, we would have a local canonical parametrization ϕ(θ) =
(d/dV )`(θ;y0) obtained from the sensitivity array V (θ) in (3.2). This gives an exponential
canonical parameterization if the model is exponential and otherwise gives an approximate
version of such. For some background, see Fraser, Wong & Sun (2009), and Fraser, Reid,
Marras & Yi (2009). In the more general context, we would use j(θ) = jϕϕ(θ) as the infor-
mation function with special construction details in Fraser, Reid, Marras, and Yi (2009).
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Figure 5: In each component plot we have recorded the linear contour that locally coincides
with the parametric ψ at the observed maximum likelihood value θ̂0. Going from figure to
figure straight lines remain straight lines so we are now in a position to assess the numerical
curvature of the contour ψ = ψ̂ = 0.6488188. In Figure 5 d, we have plotted the circle that
coincides with the given ψ = ψ̂0 to the second order at the data point. The curvature is
γ̂0 = 0.1346722 with radius of curvature ρ̂0 = 7.425437.
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From the method given by (2.1) we have

 dθ1

dθ2

′ iϕϕ

 dθ1

dθ2


=

 dµ

dσ

′ n/σ2 0

0 2n/σ2

 dµ

dσ


and see that the parametric coordinates as given are orthogonal; see Figure 5. We then
center the parameter as in (b); use a root information to rescale as in (c); then rotate as in
(d) so that the ψ parameterization increases to the right. In each case, we show the data
point, the likelihood contour at 2 standard units and the contour ψ(θ) = ψ̂0.

6 The example: Linearity and curvature

For the discussion of the Normal (µ,σ2) example, we have used θ = (µ,σ) and presented
plots in terms of coordinates µ and σ. We could have used other coordinates such as
(µ, logσ) or (µ,σ2) but the present choice has the advantage of linearity. The development
of linearity in Fraser, Reid, Marras & Yi (2009) was mentioned as general background for
the Bayesian–frequentist difference discussed in Fraser (2009), and the Normal (µ,σ2) was
the next choice for exhibiting departure from the simplicity of the Normal–on–the–plane.
Then straight from the definition of linearity we showed that µ, σ and even the general
quantile µ+kσ for given k are linear to second order. This then gives us the background to
assess the curvature of ψ = µ/σ2.

In each component plot in Figure 5, we have recorded the observed maximum likeli-
hood value, θ̂0, the maximum likelihood contour ψ(θ) = ψ̂0 for the interest parameter ψ

and the tangent linear parameter at θ = θ̂0. The changes from (a) to (b) to (c) to (d) leave
straight lines straight. From (a) to (b), we center at the maximum likelihood value; from
(b) to (c) we standardize using root observed information; and from (c) to (d) we rotate so
that the tangent to the interest parameter is vertical. In each case we record the 2 standard
deviation likelihood ellipse about θ̂0. And then finally in plot (d) we present the fitted circle
at the maximum likelihood value. This gives the observed curvature γ̂0 = 0.1346722 and
radius ρ̂0 = 7.425437.
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7 Discussion and future directions

Statistics as a discipline has two prominent methodologies that can, in common areas of
application, give significantly different conclusions from the same model-data input. The
methodologies are the Bayesian (1763) that makes use of what we might now call default
or invariant priors, and the frequentist that is perhaps older but was given modern formal-
ism (Fisher, 1930; Neyman, 1937) with the proposal for what is now called confidence.
How can a discipline hope for serious respect from the larger scientific community when
it has two logics that extract different conclusions from the same input information; if the
conclusions are contradictory then one or other or both of the so-called logics must be de-
fective! Some recent thoughts on this conflict may be found in Fraser (2009) where it is
argued that the Bayes posterior in suitable circumstances can be viewed as an approxima-
tion to confidence. In this paper we have addressed this Bayesian frequentist difference by
considering the Normal on the plane where the Bayesian frequentist difference clearly fo-
cuses on curvature in the parameter of interest; and we have raised the question whether the
quick-and-easy of the default Bayes approach can be upgraded so as to reduce the misrepre-
sention concerning repetition properties of posterior quantiles. For this we have developed
an algorithm for measuring curvature, an algorithm that leads to a curvature measure that
at higher order can differ from the familiar Efron curvature. Part of defining curvature is
to first close on what linearity of parameters means when the canonical parameters of a
full exponential model are linear in the Efron sense whereas the canonical parameters of a
location model are linear in the proposed sense (Fraser, Reid, Marras & Yi, 2009); the reli-
ability of the location model used with the Bayes approach argues for the merits of linearity
in the location sense.

An initial hope was that the discrepancy function in Section 1 for the normal circle
could be applied directly to upgrade the Bayesian, and improve the repetition reliability
of resulting summary inference statements. For this, the null model has location normal
properties to first order when standardized, and the curvature and the nonnormality are
each of second order; but there seem to be subtle interactions between these second order
effects.

The linearity in the present location sense however allows some removal of the Bayes
bias. In Figure 3 we have recorded the linear parameter that coincides with the interest pa-
rameter at the constrained maximum. By taking the linear parameter as a first step towards
repetition reliability we can partially correct the Bayes bias. In Figure 6 we have included
the Bayes posterior survivor function for the linear parameter and then pondered whether

17



−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!

p(!)
s(!)
s*(!)

Figure 6: p-value for ψ, p(ψ); Bayes survivor for ψ, s(ψ); and linearly corrected survivor
for ψ, s∗(ψ)

doubling the correction to get a nominal p-value would be effective; when compared with
the third order p-values this seems to be an over correction. Thus we would recommend at
this stage just the correction provided by the step to the linear parameter survivor value.

The Bayesian frequentist difference represents a huge challenge for our discipline. and
to seek ways to improve the repetition reliability should take prominence. We have at-
tempted a recognition of this urgency.

In this paper we have approached the Bayesian frequentist difference by focussing on
parameter curvature as the prime source for breakdown in the Bayes methodology, by
proposing a measure of curvature, and by developing a simple correction procedure for
an elementary statistical problem. In doing this we feel we are pointing a direction for
research and that only the preliminaries have been touched.
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The directions suggest an explicit formula for the curvature, an explicit formula for the
linear correction, simulation studies to evaluate the corresponding correction accuracy, and
hopefully a full second order correction for Bayes curvature bias.
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