Zhang, X., Wang, L., and Volgushev, S. and Kong, D. Fighting Noise with Noise: Causal Inference with Many Candidate Instruments arxiv
Engelke, S., Lalancette, M. and Volgushev, S. Concentration bounds for the extremal variogram arxiv
Yu, L., Gu, J. and Volgushev, S. Group structure estimation for non-linear panel data -
a general approach arxiv
Methodology and theory publications
Goto, Y., Kley, T., Van Hecke, R., Volgushev, S., Dette, H. and Hallin, M. (2022+) The integrated copula spectrum Annals of Statistics accepted
arxiv preprint
Engelke, S. and Volgushev, S. (2022) Structure learning for extremal tree models Journal of the Royal Statistical Society: Series B 84(4) 2055–2087
arxiv preprint
Vural, N.M., Yu, L., Balasubramanian, K., Volgushev, S. and Erdogdu, M. (2022)
Mirror Descent Strikes Again: Optimal Stochastic Convex Optimization under Infinite Noise Variance
COLT 2022 (pp. 65-102). PMLR
arxiv preprint
Wang, R., Zhu, C., Volgushev, S. and Shao, X (2022)
Inference for Change Points in High Dimensional Data Annals of Statistics 50 (2), pp 781-806
arxiv preprint
Yu, L., Balasubramanian, K., Volgushev, S. and Erdogdu, M. (2021) An Analysis of Constant Step Size SGD in the Non-convex Regime:
Asymptotic Normality and Bias Advances in Neural Information Processing Systems 35 (NeurIPS), 2021 arxiv preprint
Lalancette, M., Engelke, S. and Volgushev, S. (2021) Rank-based Estimation under Asymptotic Dependence and Independence,
with Applications to Spatial Extremes Annals of Statistics 49(5): pp 2552-2576
arxiv preprint
Zou, N., Volgushev, S. and Bücher, A. (2021). Multiple block sizes and overlapping blocks for multivariate time series extremes Annals of Statistics 49(1): pp 295-320
arxiv preprint
Galvao, A., Gu, J. and Volgushev, S. (2020). On the Unbiased Asymptotic Normality of Quantile Regression with Fixed Effects Journal of Econometrics 218(1), pp 178-215
arxiv preprint
Dette, H., Kokot, K., and Volgushev, S. (2020). Testing relevant hypotheses in functional time series via self-normalization Journal of the Royal Statistical Society: Series B 82 (3) 629-660
arxiv preprint
Volgushev, S. (2020). Smoothed quantile regression processes for binary response models. Econometric Theory 36 (2), pp 292-330
arxiv preprint
Gu, J. and Volgushev, S. (2019). Panel Data Quantile Regression with Grouped Fixed Effects Journal of Econometrics 213(1), pp 68-91
arxiv preprint
Volgushev, S., Chao, S.-K. and Cheng, G. (2019) Distributed inference for quantile regression processes Annals of Statistics 47(3), pp 1634-1662.
arxiv preprint
Bücher, A., Volgushev, S. and Zou, N. (2019). On Second Order Conditions in the Multivariate Block Maxima and Peak over Threshold Method Journal of Multivariate Analysis 173, pp 604-619
arxiv preprint
Birr, S., Kley, T. and Volgushev, S. (2019). Model assessment for time series dynamics using copula spectral densities: a graphical tool Journal of Multivariate Analysis 172, pp 122-146
arxiv preprint
Möllenhoff, K., Dette, H., Kotzagiorgis, E. Volgushev, S. and Collignon, O. (2018). Regulatory assessment of drug dissolution profiles comparability via maximum deviation. Statistics in Medicine ;
37 (20), pp 2968–2981
Dette, H., Möllenhoff, K., Volgushev, S. and Bretz , F. (2018). Equivalence of dose response curves. Journal of the American Statistical Association 113 (522), pp 711-729
arxiv preprint
Gu, J., Koenker, R. and Volgushev, S. (2018). Testing for homogeneity in mixture models. Econometric Theory 34 (4), pp 850-895
arxiv preprint
van Hecke, R., Volgushev, S. and Dette, H. (2018). Fourier analysis of serial dependence measures Journal of Time Series Analysis 39, pp 75-89
arxiv preprint
Birr, S., Dette, H., Hallin, M., Kley, T. and Volgushev, S. (2018). On Wigner-Ville Spectra and the Unicity of Time-Varying Quantile-Based Spectral Densities Journal of Time Series Analysis 39, pp 242-250
arxiv preprint
Birr, S,. Volgushev, S., Kley, T., Dette, H. and Hallin, M. (2017). Quantile spectral analysis for locally stationary time series. Journal of the Royal Statistical Society: Series B 79 (5), pp 1619–1643
arxiv preprint
Chao, S.-K., Volgushev, S. and Cheng, G. (2017). Quantile processes for semi and nonparametric regression Electronic Journal of Statistics 11, pp 3272-3331
arxiv preprint
Birke, M., Neumeyer, N. and Volgushev, S. (2017). The independence process in conditional quantile location-scale models and an application to testing for monotonicity. Statistica Sinica 27, pp 1815-1839
arxiv preprint
Berghaus, B., Bücher, A. and Volgushev, S (2017). Weak convergence of the empirical copula process with respect to weighted metrics. Bernoulli 23 (1), 743-772
Sengupta, S., Volgushev, S. and Shao, X. (2016). A subsampled double bootstrap for massive data. Journal of the American Statistical Association 111 (515), 1222-1232
Kley, T., Volgushev, S., Dette, H. and Hallin, M. (2016). Quantile spectral processes: Asymptotic analysis and inference. Bernoulli 22 (3), 1770-1807
Dette, H., Titoff, S., Volgushev, S. and Bretz, F. (2015). Model identification for dose response signal detection. Biometrics 71 (4), 996-1008
Dette, H., Hallin, M., Kley, T. and Volgushev, S. (2015). Of copulas, quantiles, ranks and spectra: An $L_1$-approach to spectral analysis. Bernoulli Vol. 21, No. 2, 781-831
Huang, Y., Volgushev, S. and Shao, X. (2015). On self-normalization for censored dependent data. Journal of Time Series Analysis Vol. 36(1), 109-124.
Volgushev, S., Wagener, J. and Dette, H. (2014). Censored quantile regression processes under dependence and penalization. Electronic Journal of Statistics, Vol. 8(2), 2405-2447.
Dette, H., Van Hecke, R. and Volgushev, S. (2014). Some comments on copula-based regression. Journal of the American Statistical Association , Vol. 109(507), 1319-1324.
Volgushev, S. and Shao, X. (2014). A general approach to the joint asymptotic analysis of statistics from sub-samples. Electronic Journal of Statistics , Vol. 8, 390-431.
Bücher, A., Segers, J. and Volgushev, S. (2014). When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs. Annals of Statistics , Vol. 42(4), 1598-1634
Volgushev, S. and Dette, H. (2013). Nonparametric quantile regression for twice censored data. Bernoulli Vol. 19(3), 748-779.
Bücher, A. and Volgushev, S. (2013). Empirical and sequential empirical copula processes under serial dependence. Journal of Multivariate Analysis , Vol. 119, 61-70.
Dette, H., Wagener, J. and Volgushev, S. (2013). Nonparametric comparison of quantile curves: A stochastic process approach. Journal of Nonparametric Statistics , Vol. 25(1), 243-260.
Volgushev, S., Birke, M., Dette, H and Neumeyer, N. (2013). Significance testing in quantile regression. Electronic Journal of Statistics , Vol. 7, 105-145
Bücher, A., Dette, H. and Volgushev, S. (2012). A test for Archimedeanity in bivariate copula models. Journal of Multivariate Analysis , Vol. 110, 121-132.
Wagener, J., Volgushev, S. and Dette, H. (2012). The quantile process under random censoring Mathematical Methods of Statistics , Vol. 21(2), 127-141.
Bücher, A., Dette, H. and Volgushev, S. (2011). New estimators of the Pickands dependence function and a test for extreme-value dependence. Annals of Statistics , Vol. 39, No. 4, 1963-2006.
Dette, H., Wagener, J. and Volgushev, S. (2011). Comparing conditional quantile curves. Scandinavian Journal of Statistics , Vol. 38, 63-88.
Dette, H. and Volgushev, S. (2008). Non-crossing nonparametric estimates of quantile curves Journal of the Royal Statistical Society: Series B , Vol. 70(3), 609-627.
Collaborative Publications
Gralla, R., Kraft, K. and Volgushev, S. (2017). The effects of works councils on overtime hours - a censored quantile regression approach. Scottish Journal of Political Economy, Vol 64, pp 143-168
Malyshev, A., Tchumachenko, T., Volgushev, S. and Volgushev, M. (2013). Energy-efficient encoding by shifting spikes in neocortical neurons. European Journal of Neuroscience , Vol. 38, pp 3181-3188.
Hoch, T., Volgushev, S., Malyshev, A., Obermayer, K. and Volgushev, M. (2011). Modulation of the amplitude of $\gamma$-band activity by stimulus phase enhances signal encoding. European Journal of Neuroscience, Vol. 33, pp 1223-1239.
Volgushev, M., Malyshev, A., Balaban, P., Chistiakova, M., Volgushev, S., (2008). Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference. PLoS ONE 3(4)