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ABSTRACT
We develop a unified theory and methodology for the inference of evolutionary Fourier power spectra for a
general class of locally stationary and possibly nonlinear processes. In particular, simultaneous confidence
regions (SCRs) with asymptotically correct coverage rates are constructed for the evolutionary spectral
densities on a nearly optimally dense grid of the joint time-frequency domain. A simulation based bootstrap
method is proposed to implement the SCR. The SCR enables researchers and practitioners to visually
evaluate the magnitude and pattern of the evolutionary power spectra with asymptotically accurate
statistical guarantee. The SCR also serves as a unified tool for a wide range of statistical inference problems in
time-frequency analysis ranging from tests for white noise, stationarity, and time-frequency separability to
the validation for nonstationary linear models. Supplementary materials for this article are available online.
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1. Introduction

It is well known that the frequency content of many real-
world stochastic processes evolves over time. Motivated by the
limitations of the traditional spectral methods in analyzing
nonstationary signals, time-frequency analysis has become
one of the major research areas in applied mathematics and
signal processing (Daubechies 1990; Cohen 1995; Gröchenig
2001). Based on various models or representations of the
nonstationary signal and its time-varying spectra, time-
frequency analysis aims at depicting temporal and spectral
information simultaneously and jointly. Roughly speaking,
there are three major classes of algorithms in time-frequency
analysis: linear algorithms such as short time Fourier transforms
(STFTs) and wavelet transforms (Allen 1977; Daubechies
1992; Meyer 1992); bilinear time-frequency representations
such as the Wigner–Ville distribution and more generally
the Cohen’s class of bilinear time-frequency distributions
(Hlawatsch and Boudreaux-Bartels 1992; Cohen 1995) and
nonlinear algorithms such as the empirical mode decompo-
sition method (Huang et al. 1998) and the synchrosqueezing
transform (Daubechies, Lu, and Wu 2011). Though there exists
a vast literature on defining and estimating the time-varying
frequency content, statistical inference such as confidence
region construction and hypothesis testing has been paid little
attention to in time-frequency analysis.

It is clear that the subject and the goals of time-frequency
analysis and nonstationary time series analysis are highly
overlapped. Unfortunately, it seems that the nonstationary
spectral domain theory and methodology in the time series
literature have been developed largely independently from time-
frequency analysis. One major effort in nonstationary time
series analysis lies in forming general classes of nonstationary
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Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

time series models through their evolutionary spectral repre-
sentation. Among others, Priestley (1965) proposed the notion
of evolutionary spectra in a seminar paper. In another seminal
work, Dahlhaus (1997) defined a general and theoretically
tractable class of locally stationary time series models based on
their time-varying spectral representation. Nason, von Sachs,
and Kroisandt (2000) studied a class of locally stationary time
series from an evolutionary wavelet spectrum perspective and
investigated the estimation of the latter spectrum. A second
line of research in the nonstationary spectral domain literature
involves adaptive estimation of the evolutionary spectra. See, for
instance, Adak (1998) for a binary segmentation based method,
Ombao et al. (2001) for an automatic estimation procedure
based on the smooth localized complex exponential (SLEX)
transform, and Fryzlewicz and Nason (2006) for a Haar–Fisz
technique for the estimation of the evolutionary wavelet spectra.
On the statistical inference side, there exists a small number
of papers utilizing the notion of evolutionary spectra to test
some properties, especially second-order stationarity, of a time
series. See, for instance, Paparoditis (2010), Dette, Preuss, and
Vetter (2011), Dwivedi and Subba Rao (2011), and Jentsch and
Subba Rao (2015) for tests of stationarity based on properties of
the Fourier periodogram or spectral density. See also Nason
(2013) for a test of stationarity based on the evolutionary
wavelet spectra. On the other hand, however, to date there have
been no results on the joint and simultaneous inference of the
evolutionary spectrum itself for general classes of nonstationary
and possibly nonlinear time series to the best of our knowledge.

The purpose of the article is to develop a unified theory
and methodology for the joint and simultaneous inference
of the evolutionary spectral densities for a general class of
locally stationary and possibly nonlinear processes. From
a time-frequency analysis perspective, the purpose of the
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article is to provide a unified and asymptotically correct
method for the simultaneous statistical inference of the STFT-
based evolutionary power spectra, one of the most classic
and fundamental algorithms in time-frequency analysis. Let
{X(N)

i }N
i=1 be the observed time series or signal. One major

contribution of the article is that we establish a maximum
deviation theory for the STFT-based spectral density estimates
over a nearly optimally dense grid GN in the joint time-
frequency domain. Here the optimality of the grid refers to the
best balance between computational burden and (asymptotic)
correctness in depicting the overall time-frequency stochastic
variation of the estimates. We refer the readers to Section 5.1 for
a detailed definition and discussion of the optimality. The theory
is established for a very general class of possibly nonlinear
locally stationary processes which admit a time-varying physical
representation in the sense of Zhou and Wu (2009) and serves
as a foundation for the joint and simultaneous time-frequency
inference of evolutionary spectral densities. Specifically, we
are able to prove that the spectral density estimates on GN
are asymptotically independent quadratic forms of {X(N)

i }N
i=1.

Consequently, the maximum deviation of the spectral density
estimates on GN behaves asymptotically like a Gumbel law.
The key technique used in the proofs is a joint time-frequency
Gaussian approximation to a class of diverging dimensional
quadratic forms of nonstationary time series, which may have
wider applicability in evolutionary power spectrum analysis.

A second main contribution of the article is that we pro-
pose a simulation based bootstrap method to implement simul-
taneous statistical inferences to a wide range of problems in
time-frequency analysis. The motivation of the bootstrap is to
alleviate the slow convergence of the maximum deviation to
its Gumbel limit. The bootstrap simply generates independent
normally distributed pseudo samples of length N and approx-
imate the distribution of the target maximum deviation with
that of the normalized empirical maximum deviations of the
spectral density estimates from the pseudo samples. The similar
idea was used in, for example, Wu and Zhao (2007) and Zhou
and Wu (2010), for different problems. The bootstrap is proved
to be asymptotically correct and performs reasonably well in
the simulations. One important application of the bootstrap is
to construct simultaneous confidence regions (SCRs) for the
evolutionary spectral density, which enables researchers and
practitioners to visually evaluate the magnitude and pattern of
the evolutionary power spectra with asymptotically accurate
statistical guarantee. In particular, the SCR helps one to visually
identify which variations in time and/or frequency are genuine
and which variations are likely to be produced by random
fluctuations. See Section 7.4 for two detailed applications in
earthquake and explosion signal processing and finance. On the
other hand, the SCR can be applied to a wide range of tests on
the structure of the evolutionary spectra or the time series itself.
Observe that typically under some specific structural assump-
tions, the time-varying spectra can be estimated with a faster
convergence rate than those estimated by STFT without any
prior information. Therefore, a generic testing procedure is to
estimate the evolutionary spectra under the null hypothesis
and check whether the latter estimated spectra can be fully
embedded into the SCR. This is a very general procedure and
it is asymptotically correct as long as the evolutionary spectra

estimated under the null hypothesis converges faster than the
SCR. Furthermore, the test achieves asymptotically the power
1 for local alternatives whose evolutionary spectra deviate from
the null hypothesis with a rate larger than the order of the width
of the SCR. Specific examples include tests for nonstationary
white noise, weak stationarity and time-frequency separability
as well as model validation for locally stationary ARMA models
and so on. See Section 5.2 for a detailed discussion and Sec-
tion 7.4 for detailed implementations of the tests in real data.

Finally, we would like to mention that, under the stationarity
assumption, the inference of the spectral density is a classic topic
in time series analysis. There is a vast literature on the topic and
we will only list a very small number of representative works.
Early works on this topic include Parzen (1957), Woodroofe and
Ness (1967), Brillinger (1969), Anderson (1971), and Rosenblatt
(1984), among others where asymptotic properties of the spec-
tral density estimates were established under various linearity,
strong mixing, and joint cumulant conditions. For recent devel-
opments, see Liu and Wu (2010), Paparoditis and Politis (2012),
and Wu and Zaffaroni (2018), among others.

The rest of the article is organized as follows. We first for-
mulate the problem in Section 2. In Section 3, we study the
STFT and show that the STFTs are asymptotically independent
Gaussian random variables under very mild conditions. In Sec-
tion 4, we study the asymptotic properties of the STFT-based
spectral density estimates, including consistency and asymptotic
normality. In Section 5, we establish a maximum deviation
theory for the STFT-based spectral density estimates over a
nearly optimally dense grid in the joint time-frequency domain.
In Section 6, we discuss tuning parameter selection and propose
a simulation-based bootstrap method to implement the simul-
taneous statistical inference. Simulations and real data analysis
are given in Section 7. Proofs of the main results are deferred to
Section 8 and many details of the proofs have been put in the
online supplementary materials.

2. Problem Formulation

We first define locally stationary time series and their instan-
taneous covariance and spectral density. Throughout the arti-
cle, we assume the time series {X(N)

i }N
i=1 is centered, that is,

E[X(N)
i ] = 0. Furthermore, for a random variable X, define

‖X‖q := [E|X|q]1/q and use ‖ · ‖ to denote ‖ · ‖2 for simplicity.

Definition 2.1 (Locally stationary time series (Zhou and Wu
2009)). We say {X(N)

i }N
i=1 is a locally stationary time series if

there exists a nonlinear filter G such that

X(N)
i = G (i/N,Fi) , i = 1, . . . , N, (1)

where Fi = (. . . , ε0, . . . , εi−1, εi) and εi’s are iid random vari-
ables. Furthermore, the nonlinear filter G satisfies the stochastic
Lipschitz continuity condition, SLC(q), for some q > 0; that is,
there exists C > 0 such that for all i and u, s ∈ (0, 1), we have

‖G(u,Fi) − G(s,Fi)‖q ≤ C|u − s|. (2)

Remark 2.1. For time series X1, X2, . . . , XN , we rescale the
time index as ti = i/N, i = 1, . . . , N. Then {ti} forms a
dense grid in [0, 1]. The rescaled time u ∈ [0, 1] is a natural
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extension of {ti}N
i=1 to be continuum. This rescaling provides

an asymptotic device for studying locally stationary time series,
which was first introduced by Dahlhaus (1997). In particular,
the rescaling together with the stochastic Lipschitz continuity
assumption ensure that for each Xi, there is a diverging number
of data points in its neighborhood with similar distributional
properties.

Example 2.1 (Locally stationary linear time series). Let εi be iid
random variables and

G(u,Fi) =
∞∑

j=0
aj(u)εi−j, (3)

where aj(u) ∈ C1[0, 1] for j = 0, 1, . . . . This model was consid-
ered in Dahlhaus (1997). Verification of the SLC assumption is
discussed in Zhou and Wu (2009, Propositions 2 and 3).

Example 2.2 (Time varying threshold AR models). Let εi ∈
Lq, q > 0 be iid random variables with distribution function
Fε and density fε . Consider the model

G(u,Fi) = a(u)[G(u,Fi−1)]+ + b(u)[−G(u,Fi−1)]+ + εi,
0 ≤ u ≤ 1, (4)

where a(·), b(·) ∈ C1[0, 1]. Then if supu[|a(u)|+|b(u)|] < 1, the
SLC(q) assumption holds. See also Zhou and Wu (2009, sec. 4)
for more discussions on checking the SLC assumption for locally
stationary nonlinear time series.

For simplicity, we will use Xi to denote X(N)
i in this article.

Without loss of generality, we assume Xi = 0 for any i > N. We
adopt the physical dependence measure Zhou and Wu (2009) to
describe the dependence structure of the time series.

Definition 2.2 (Physical dependence measure). Let {ε′
i} be an iid

copy of {εi}. Consider the locally stationary time series {Xi}N
i=1.

Assume max1≤i≤N ‖Xi‖p < ∞. For k ≥ 0, define the kth
physical dependence measure by

δp(k) := sup
0≤u≤1

‖G(u,Fk) − G(u, (F−1, ε′
0, ε1, . . . , εk))‖p. (5)

Next, we extend the geometric-moment contraction (GMC)
condition (Shao and Wu 2007) to the nonstationary setting.

Definition 2.3 (Geometric-moment contraction). We say that the
locally stationary time series {Xi}N

i=1 is GMC(p) if for any k we
have δp(k) = O(ρk) for some ρ ∈ (0, 1).

Let Pk(X) := E(X |Fk) − E(X |Fk−1) and X̃[�]
k :=

E(Xk | εk−�+1, . . . , εk) be the �-dependent conditional expecta-
tions of Xk. From the GMC(2) condition and supk ‖Xk‖ < ∞,
one can easily verify that supk

∑k
j=−∞ ‖PjXk‖ < ∞ and

lim�→∞ supk ‖Xk − X̃[�]
k ‖ = 0. We refer to Remark A.1 of

the online supplementary materials and Shao and Wu (2007)
for more discussions on the GMC condition.

Example 2.3 (Nonstationary nonlinear time series). Many sta-
tionary nonlinear time series models are of the form

Xi = R(Xi−1, εi), (6)

where εi are iid and R is a measurable function. A natural
extension to a locally stationary setting is to incorporate the time
index u via

Xi(u) = R(u, Xi−1(u), εi), 0 ≤ u ≤ 1. (7)

Zhou and Wu (2009, Theorem 6) showed that one can have
a nonstationary process Xi = X(N)

i = G(i/N,Fi) and the
GMC(α) condition holds, if supu ‖R(u, x0, εi)‖α < ∞ for some
x0, and

sup
u∈[0,1]

sup
x 	=y

‖R(u, x, ε0) − R(u, y, ε0)‖α

|x − y| < 1. (8)

See Zhou and Wu (2009, sec. 4.2) for more details.

Definition 2.4 (Instantaneous covariance). Let u ∈ [0, 1]. The
instantaneous covariance at u is defined by

r(u, k) := cov (G(u,F0), G(u,Fk)) . (9)

Remark 2.2. The assumption of SLC(q) together with supi
E|Xi|p < ∞, where 1/p + 1/q = 1, implies the instantaneous
covariance r(u, k) is Lipschitz continuous. That is, for all k and
for all u, s ∈ [0, 1], u 	= s, we have

|r(u, k) − r(s, k)|/|u − s| ≤ C, (10)

for some finite constant C. The proof is given in Appendix A.16
of the online supplementary materials. Therefore, uniformly on
u, for any positive integer n ≤ N, we have

r(u + δu, k) − r(u, k) = O(n/N), ∀ − n/N ≤ δu ≤ n/N.
(11)

Particularly, if we choose n = o(
√

N) then r(u + δu, k) −
r(u, k) = o(1/n), ∀ − n/N ≤ δu ≤ n/N.

Next, we define the evolutionary spectral density using the
instantaneous covariance.

Definition 2.5 (Instantaneous spectral density). Let u ∈ [0, 1].
The spectral density at u is defined by

f (u, θ) := 1
2π

∑
k∈Z

r(u, k) exp(
√−1kθ). (12)

Remark 2.3. In the definition of instantaneous spectral density,
u ∈ [0, 1] represents the rescaled time (see Remark 2.1 for
more discussions) and θ ∈ [0, 2π) represents the frequency.
Different from the usual spectral density for stationary process,
the instantaneous spectral density is a two dimensional function
of u and θ , which captures the spectral density variation in both
time and frequency. The usual spectral density for stationary
process is a one-dimensional function of θ and is static over
time. The notion of instantaneous spectral density is useful for
capturing the dynamics of the spectral evolution over time.

Remark 2.4. Note that, for any fixed time point u, r(u, k) is a
nonnegative definite function on the integers. Hence, Bochner’s
theorem (or Herglotz representation theorem) implies that the
covariance function r(u, k) and the spectral density function
f (u, θ) has a one-to-one correspondence at each rescaled time
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point u under the GMC condition. Therefore, r(u, k) defined
in Definition 2.4 has a one-one-one correspondence to the
spectral density f (u, θ) defined in Definition 2.5 for short range
dependent locally stationary time series defined in our article.

In this article, we always assume f∗ := infu,θ f (u, θ) > 0,
which is a natural assumption in the time series literature (see,
e.g., Shao and Wu 2007; Liu and Wu 2010). Finally, we define
the STFT, the local periodogram, and the STFT-based spectral
density estimates.

Definition 2.6 (Short-time Fourier transform). Let τ(·) ≤
τ∗ < ∞ be a kernel with support [−1/2, 1/2] such that
τ ∈ C1([−1/2, 1/2]) and

∫
τ 2(x)dx = 1. Let n be the number

of data in a local window and θ ∈ [0, 2π). Then the STFT is
defined by

Jn(u, θ) :=
N∑

i=1
τ

(
i − uN�

n

)
Xi exp(

√−1θ i). (13)

Definition 2.7 (Local periodogram).

In(u, θ) := 1
2πn

|Jn(u, θ)|2. (14)

Remark 2.5. Note that defining

r̂(u, k) := 1
n

N∑
i=1

τ

(
i − uN�

n

)
τ

(
i + k − uN�

n

)
XiXi+k,

(15)

then we can write In(u, θ) as

In(u, θ) = 1
2π

n∑
k=−n

r̂(u, k) exp(
√−1θk). (16)

It is well known that In(u, θ) is an inconsistent estimator of
f (u, θ) due to the fact that r̂(u, k) are inconsistent when k is large.
A natural and classic way to overcome this difficulty is to restrict
the above summation to relatively small k’s only. This leads to the
following.

Definition 2.8 (STFT-based spectral density estimator). Let a(·)
be an even, Lipschitz continuous kernel function with support
[−1, 1] and a(0) = 1; let Bn be a sequence of positive integers
with Bn → ∞ and Bn/n → 0. Then the STFT-based spectral
density estimator is defined by

f̂n(u, θ) := 1
2π

Bn∑
k=−Bn

r̂(u, k)a(k/Bn) exp(
√−1kθ). (17)

Remark 2.6. The modified f̂n(u, θ) in Equation (17) is not always
nonnegative as it depends on the property of the kernel function
a(·). According to Andrews (1991, p. 822), if the kernel function
further satisfies 1

2π

∫∞
−∞ a(x) exp(−√−1θx)dx ≥ 0 for any

θ ∈ [0, 2π), then the modified f̂n(u, θ) in Equation (17) is
always nonnegative. For example, the Bartlett kernel, a(x) =
(1 − |x|)1{|x|≤1}, and the Parzen kernel, a(x) = (1 − 6x2 +
6|x|3)1{0≤|x|≤1/2} + 2(1 − |x|)31{1/2<|x|≤1}.

3. Fourier Transforms

In this section, we study the STFT and show that the STFTs
are asymptotically independent and normally distributed under
mild conditions. More specifically, when we consider frequen-
cies {2π j/n : j = 1, . . . , n}, we show that uniformly over a grid
of u and j, {Jn(u, 2π j/n)} are asymptotically independent and
normally distributed random variables.

Denote the real and imaginary parts of {Jn(u, 2π j/n)/√
πnf (u, 2π j/n)} by

Z(n)
u,j =

∑N
k=1 τ

(
k−uN�

n

)
Xk cos(k2π j/n)√

πnf (u, 2π j/n)
,

Z(n)
u,j+m =

∑N
k=1 τ

(
k−uN�

n

)
Xk sin(k2π j/n)√

πnf (u, 2π j/n)
, j = 1, . . . , m,

(18)

where m := (n − 1)/2�. Then, we have the following result.

Theorem 3.1. Assume GMC(2), SLC(2), and supk E(X2
k) < ∞.

Let 
p,q = {c ∈ R
pq : |c| = 1}, where | · | denotes Euclidean

norm, and

ZU,J = (Z(n)
u1,j1 , . . . , Z(n)

u1,jp , . . . , Z(n)
uq,j1 , . . . , Z(n)

uq,jp)
T

for J = (j1, . . . , jp) satisfies 1 ≤ j1, . . . , jp ≤ 2m and U =
(u1, . . . , uq) satisfies 0 < u1 < · · · < uq < 1. Then for any
fixed p, q ∈ N, as n → ∞, we have that

sup
J

sup
c∈
p,q

sup
x

|P(cTZU,J ≤ x) − �(x)| = o(1), (19)

where �(x) is the cumulative distribution function of the stan-
dard normal distribution.

Proof. See Section 8.1.

The above theorem shows that if we select any p elements
from the canonical frequencies {2π j/n, j = 1, . . . , n} and q
well-separated points from the rescaled time, the STFTs are
asymptotically independent on the latter time-frequency grid.
Moreover, the vector formed by these STFTs is asymptotically
jointly normally distributed.

4. Consistency and Asymptotic Normality

In this section, we study the asymptotic properties of the
smoothed periodogram estimator f̂n(u, θ).

4.1. Consistency

The consistency result for the local spectral density estimate
f̂n(u, θ) is as follows.

Theorem 4.1. Assume GMC(2), SLC(2), and there exists δ ∈
(0, 4] such that supi E(|Xi|4+δ) < ∞. Let Bn → ∞, Bn =
O(nη), 0 < η < δ/(4 + δ). Then

sup
u

max
θ∈[0,π ]

√
n/Bn|f̂n(u, θ) − E(f̂n(u, θ))| = OP(

√
log n).

(20)
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Proof. See Section 8.2.

Later we will see from Theorem 5.1 that the orderOP(
√

log n)

on the right-hand side of Equation (20) is indeed optimal.

Remark 4.1. Assume supi E|Xi|p < ∞ with p > 4 and SLC(q)

with 1/p + 1/q = 1. If we further assume the kernel τ(·) is
an even function and r(u, k) is twice continuously differentiable
with respect to u, then under GMC(2), whenever n = o(N2/3),
Bn = o(min{n, N1/3}), and supu

∑
k∈Z k2|r(u, k)| < ∞, if a(·)

is locally quadratic at 0, that is,

lim
u→0

u−2[1 − a(u)] = C, (21)

where C is a nonzero constant, then we have

sup
u

sup
θ

[
Ef̂n(u, θ) − f (u, θ) − C

B2
n

f ′′(u, θ)

]
= o(1/B2

n), (22)

where f ′′(u, θ) := − 1
2π

∑
k∈Z k2r(u, k) exp(

√−1kθ). The proof
is given in Appendix A.13 of the supplementary materials.
Therefore, the consistency of f̂n(u, θ) is implied by combining
Theorem 4.1 and Equation (22).

4.2. Asymptotic Normality

Developing an asymptotic distribution for the local spectral
density estimate is an important problem in spectral analysis of
nonstationary time series. This allows one to perform statistical
inference such as constructing point-wise confidence intervals
and performing point-wise hypothesis testing. In the following,
we derive a central limit theorem for f̂n(u, θ).

Theorem 4.2. Assume GMC(2), SLC(2), and supi E(|Xi|4+δ) <

∞ for some δ > 0, Bn → ∞ and Bn = o(n/(log n)2+8/δ). Then√
n/Bn{f̂n(u, θ) − E(f̂n(u, θ))} ⇒ N (0, σ 2

u (θ)), (23)

where ⇒ denotes weak convergence, σ 2
u (θ) = [1 + η(2θ)]f 2

(u, θ)
∫ 1
−1 a2(t)dt and η(θ) = 1 if θ = 2kπ for some integer k

and η(θ) = 0 otherwise.

Proof. See Section 8.3.

5. Maximum Deviations

The asymptotic normality for f̂n(u, θ) derived in the last section
cannot be used to construct SCR over u and θ . For simultaneous
spectral inference under complex temporal dynamics, one needs
to know the asymptotic behavior of the maximum deviation of
f̂n(u, θ) from f (u, θ) on the joint time-frequency domain, which
is an extremely difficult problem. In this section, we establish a
maximum deviation theory for the STFT-based spectral density
estimates over a dense grid in the joint time-frequency domain.
Such results serve as a theoretical foundation for the joint time-
frequency inference of the evolutionary spectral densities.

• Condition (a): Define U = {u1, . . . , uCn} where Cn = |U |
and n

2N < ui < 1 − n
2N , i = 1, . . . , Cn. For any ui1 , ui2 ∈ U

with i1 	= i2, we assume that |ui1 −ui2 | ≥ n
N (1−1/(log Bn)2).

• Condition (b): Assume supk E|Xk|p < ∞ where p > 4,
and SLC(q) where 1/p + 1/q = 1. Let α be a constant
such that 3

4(p−1)
< α < 1

4 . Then assume Cn =
o[min{(nBn)2α(p−1)−1, B1+2α(p−2)

n n−2−2γ }] for some γ > 0.
• Condition (c): Assume that a(·) is an even and bounded func-

tion with bounded support [−1, 1], limx→0 a(x) = a(0) = 1,∫ 1
−1 a2(x)dx < ∞, and

∑
j∈Z sup|s−j|≤1 |a(jx) − a(sx)| =

O(1) as x → 0.
• Condition (d): There exists 0 < δ1 < δ2 < 1 and c1, c2 > 0

such that for all large n, c1nδ1 ≤ Bn ≤ c2nδ2 .

Note that Conditions (c) and (d) are very mild. Condition (a)
implies that the time interval between any two time points on
the grid U cannot be too close. Condition (b) implies that the
total number of the selected time points is not too large.

Remark 5.1. Condition (a) implies that Cn ≤ N
n (1 − n

N )(1 −
1

(log Bn)2 ) = O(N/n). Although we do not assume {ui} to be
equally spaced, we suggest in practice choosing {ui} equally
spaced and Cn = N

n (1 − n
N )(1 − 1

(log Bn)2 ) to avoid the tricky
problem on how to choose the ui’s and the Cn.

Definition 5.1 (Dense grid GN). Let GN be a collection of time-
frequency pairs such that (u, θ) ∈ GN if u ∈ U and θ ∈ { iπ

Bn
, i =

0, . . . , Bn}.

The following theorem states that the maximum deviation
of the spectral density estimates behaves asymptotically like a
Gumbel distribution.

Theorem 5.1. Under GMC(2) and Conditions (a)–(d), we have
that, for any x ∈ R,

P

[
max

(u,θ)∈GN

n
Bn

|f̂n(u, θ) − E(f̂n(u, θ))|2
f 2(u, θ)

∫ 1
−1 a2(t)dt

−2 log Bn − 2 log Cn + log(π log Bn + π log Cn) ≤ x
]

→ e−e−x/2
.

(24)

Proof. See Section 8.4.

Theorem 5.1 states that the spectral density estimates f̂n(u, θ)

on a dense grid GN consisting of Cn × Bn total number of
pairs of (u, θ) are asymptotically independent quadratic forms
of {Xi}N

i=1. Furthermore, the maximum deviation of the spectral
density estimates on GN converges to a Gumbel law. This result
can be used to construct SCR for the evolutionary spectral
densities. Note that Theorem 5.1 is established for a very general
class of possibly nonlinear locally stationary processes for the
joint and simultaneous time-frequency inference of the evolu-
tionary spectral densities.

5.1. Near Optimality of the Grid Selection

Note that there is a trade-off on how dense the grid should be
chosen. On the one hand, we hope the grid is dense enough
to asymptotically correctly depict the whole time-frequency
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stochastic variation of the estimates. On the other hand, making
the grid too dense is a waste of computational resources since
it does not reveal any extra useful information on the overall
variability of the estimates. In the following, we define the notion
of asymptotically uniform variation matching of a sequence of
dense grids. The purpose of the latter notion is to mathemati-
cally determine how dense a sequence of grids should be such
that it will adequately capture the overall stochastic variation
of the spectral density estimates on the joint time-frequency
domain.

Definition 5.2 (Asymptotically uniform variation matching of
grids). Consider a given sequence of bandwidths (n, Bn), and
let {G̃N} be a sequence of grids of time-frequency pairs {(ui, θj)}
with time and frequencies equally spaced, that is, |ui+1 − ui| =
δθ ,n and |θj+1 −θj| = δu,n, respectively. Then the sequence {G̃N}
is said to be asymptotically uniform variation matching if

max
{ui,θj}∈G̃N

sup
{u:|u−ui|≤δu,n,θ :|θ−θj|≤δθ ,n}

√
n/Bn

×
∣∣∣[f̂n(u, θ) − E(f̂n(u, θ))

]
−
[

f̂n(ui, θj) − E(f̂n(ui, θj))
]∣∣∣

= oP(
√

log n).
(25)

Note that we have previously shown in Theorem 4.1 that
the uniform stochastic variation of

√
n/Bnf̂n(u, θ) on (u, θ) ∈

(0, 1) × [0, π) has the order OP(
√

log n). In combination with
Theorem 5.1, we can see the order OP(

√
log n) cannot be

improved. Therefore, by a simple chaining argument, we can
show if a sequence of grids {G̃N} is an asymptotically uniform
variation matching, then

√
n/Bn

∣∣∣∣∣ sup
(u,θ)∈(0,1)×[0,π)

∣∣∣f̂n(u, θ) − E(f̂n(u, θ))

∣∣∣
− max

{ui,θj}∈G̃N

∣∣∣f̂n(ui, θj) − E(f̂n(ui, θj))
∣∣∣
∣∣∣∣∣∣ = oP(

√
log n).

(26)

Hence, the uniform stochastic variation of f̂n(u, θ) on (u, θ) ∈
G̃N is asymptotically equal to the uniform stochastic variation
of f̂n(u, θ) on (u, θ) ∈ (0, 1) × [0, π). In other words,
max{ui,θj}∈G̃N

∣∣∣f̂n(ui, θj) − E(f̂n(ui, θj))
∣∣∣ and sup(u,θ)∈(0,1)×[0,π)∣∣∣f̂n(u, θ) − E(f̂n(u, θ))

∣∣∣ have the same limiting distribution.
However, a grid that is asymptotically uniform variation

matching may be unnecessarily dense which causes a waste
of computational resources without depicting any additional
useful information. The optimal grid should balance between
computational burden and asymptotic correctness in depicting
the overall time-frequency stochastic variation of the estimates.
Furthermore, if the grid is too dense, the limiting distribution is
different from our main result and is unknown to the best of our
knowledge. Therefore, we hope to choose a sequence of grids as
sparse as possible provided it is (nearly) asymptotically uniform
variation matching.

Next, we show the sequence of grids used in Theorem 5.1 is
indeed nearly optimal in this sense. Recall that in Theorem 5.1,

the interval between adjacent frequencies is of order δθ ,n =

(1/Bn) and the averaged interval between two adjacent time
indices is of order δu,n = 
(n/N), where we define an = 
(bn)
if 1/an = O(1/bn). In the following, we show that if we choose a
sequence of slightly denser grids with δθ ,n = O

(
1

Bn(log n)α

)
and

δu,n = O
(

n
N(log n)α

)
where α is any fixed positive constant, then

the latter sequence of grids is asymptotically uniform variation
matching. Since α can be chosen arbitrarily close to zero, the
dense grids in Theorem 5.1 are nearly optimal.

Theorem 5.2. Under the assumptions of Theorem 5.1, a
sequence of grids with equally spaced time and frequency
intervals δu,n and δθ ,n is asymptotically uniform variation
matching if δu,n = O

(
n

N(log n)α

)
and δθ ,n = O

(
1

Bn(log n)α

)
for some α > 0.

Proof. See Appendix A.14 of the supplementary materials.

5.2. Applications of the Simultaneous Confidence Regions

In this subsection, we illustrate several applications of the pro-
posed SCR for joint time-frequency inference. These examples
include testing time-varying white noise (Example 5.1), testing
stationarity (Example 5.2), testing time-frequency separability
or correlation stationarity (Example 5.3), and validating time-
varying ARMA models (Example 5.4).

These examples demonstrate that our maximum deviation
theory can serve as a foundation for the joint and simultane-
ous time-frequency inference. In particular, as far as we know,
there is no existing methodology in the literature for testing
time-frequency separability of locally stationary time series, nor
model validation for time-varying ARMA models, although
they are certainly very important problems. On the other hand,
our proposed SCR serves as an asymptotically valid and visu-
ally friendly tool for the above purposes (see Examples 5.3
and 5.4).

To implement the tests, observe that typically under some
specific structural assumptions, the time-varying spectra can be
estimated with a faster convergence rate than those estimated
by the STFT. Therefore, to test the structure of the evolutionary
spectra under the null hypothesis, a generic procedure is to
check whether the estimated spectra under the null hypothesis
can be fully embedded into the SCR. Note that this very general
procedure is asymptotically correct as long as the evolutionary
spectra estimated under the null hypothesis converges faster
than the SCR. The test achieves asymptotic power 1 for local
alternatives whose evolutionary spectra deviate from the null
hypothesis with a rate larger than the order of the width of the
SCR.

Example 5.1 (Testing time-varying white noise). White noise is
a collection of uncorrelated random variables with mean 0 and
time-varying variance σ 2(u). It can be verified that testing time-
varying white noise is equivalent to testing the following null
hypothesis:

H0 : ∀θ , f (u, θ) = g(u), u ∈ [0, 1] (27)
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for some time-varying function g(·). Consider the following
optimization problem:

g0(u) := arg min
g̃

1
π

∫ π

0
|f (u, θ) − g̃(u)|2dθ . (28)

That is, we would like to find a function of u which is closest
to f (u, θ) in L2 distance. Direct calculations show that g0(u) =
1
π

∫ π

0 f (u, θ)dθ . Therefore, under the null hypothesis we can
estimate the function g in Equation (27) by

ĝ(u) := 1
π

∫ π

0
f̂n(u, θ)dθ ≈ 1

π

∫ π

0
f (u, θ)dθ = g0(u). (29)

It can be shown that under the null hypothesis the convergence
rate of ĝ(u) uniformly over u is OP(

√
log n/

√
n), which is faster

than the rate of SCR which is OP(
√

log n/
√

n/Bn). Therefore,
we can apply the proposed SCR to test time-varying white noise.

Example 5.2 (Testing stationarity). Under the null hypothesis
that the time series is stationary, it is equivalent to testing

H0 : ∀u, f (u, θ) = h(θ), θ ∈ [0, π ] (30)

for some function h(·). Consider the following optimization
problem:

h0(θ) := arg min
h̃

∫ 1

0
|f (u, θ) − h̃(θ)|2du. (31)

That is, we would like to find a function of θ which is closest
to f (u, θ) in L2 distance. Direct calculations show that h0(θ) =∫ 1

0 f (u, θ)du. Therefore, under the null hypothesis, we can esti-
mate the function h in Equation (30) by

ĥ(θ) :=
∫ 1

0
f̂n(u, θ)du ≈

∫ 1

0
f (u, θ)du = h0(θ). (32)

It can be shown that the convergence rate of ĥ(θ) uniformly
over θ is OP(

√
log n/

√
N/Bn), which is faster than the rate

OP(
√

log n/
√

n/Bn) of the SCR. Therefore, we can apply the
proposed SCR to test stationarity.

Example 5.3 (Testing time-frequency separability or correlation
stationarity). We call a nonstationary time series time-
frequency separable if f (u, θ) = g(u)h(θ) for some functions
g(·) and h(·). If a nonstationary time series is time-frequency
separable, the frequency curves across different times are
parallel to each other. Similarly, the time curves across different
frequencies are parallel to each other as well. Therefore, the
property of time-frequency separability enables one to model
the temporal and spectral behaviors of the time-frequency
function separately. Furthermore, it can be verified that
testing time-frequency separability is equivalent to testing
correlation stationarity for locally stationary time series, that
is, corr(Xi, Xi+k) = l(k), for some function l(·). Without loss of
generality, we can formulate the null hypothesis as

H0 : f (u, θ) = C0g(u)h(θ), (33)

for some constant C0 and
∫ 1

0 g(u)du = 1 and
∫ π

0 h(θ) = 1.
Under the null hypothesis, we can estimate C0, g(u), and h(θ)

by

Ĉ0 :=
∫ π

0

∫ 1

0
f̂n(u, θ)dudθ ≈

∫ π

0

∫ 1

0
f (u, θ)dudθ = C0,

(34)

ĝ(u) := 1
Ĉ0

∫ π

0
f̂n(u, θ)dθ ≈ 1

C0

∫ π

0
f (u, θ)dθ = g(u), (35)

ĥ(θ) := 1
Ĉ0

∫ 1

0
f̂n(u, θ)du ≈ 1

C0

∫ 1

0
f (u, θ)du = h(θ), (36)

and we can estimate f (u, θ) by Ĉ0ĝ(u)ĥ(θ). It can be shown
that the convergence rates of Ĉ0, ĝ(u), and ĥ(θ) are OP(1/

√
N),

OP(
√

log n/
√

n), and OP(
√

log n/
√

N/Bn), respectively. All of
them are faster than the convergence rate of the SCR which is
OP(

√
log n/

√
n/Bn). Therefore, we can apply the proposed SCR

to test the null hypothesis.

Example 5.4 (Validating time-varying ARMA models). Consider
the null hypothesis that the time series follows the following
time-varying ARMA model

H0 :
p∑

i=0
ai(t/N)Xt−i =

q∑
j=0

bj(t/N)εt−j, (37)

where a0(u) = 1, ai(·), bi(·) ∈ C1[0, 1], and εi are uncorrelated
random variables with mean 0 and variance 1. Under the null
hypothesis, {Xi} is a locally stationary time series with spectral
density

f (u, θ) = 1
2π

∣∣∣∑q
j=0 bj(u) exp(

√−12πθ j)
∣∣∣2∣∣∣∑p

i=0 ai(u) exp(
√−12πθ i)

∣∣∣2 . (38)

The spectral density can be fitted using the generalized Whit-
tle’s method (Dahlhaus 1997), where ai(t/N) and bi(t/N) are
estimated by minimizing a generalized Whittle function and
p and q are selected, for example, by AIC. Note that under
the null hypothesis, the spectral density estimated using Whit-
tle’s method has a convergence rate OP(

√
log n/

√
n) which is

faster than the rate OP(
√

log n/
√

n/Bn) by the STFT-based
methods without prior information. Therefore, to test the fit-
ted nonparametric time-varying ARMA model, we can plot
the nonparametric spectral density using the estimated time-
varying parameters ai(·) and bi(·). Under the null hypothesis,
the nonparametric spectral density should fall within our SCR
with the prescribed probability asymptotically.

The benefits of spectral domain approach to various hypoth-
esis testing problems depend on the specific application. For
example, for tests of stationarity, the test based on evolutionary
spectral density is technically easier than the corresponding tests
in the time domain. The main reason is that the time domain
test needs to consider time-invariance of r(u, k) for a diverging
number of k and hence is a high-dimensional problem. On the
other hand, the spectral domain test of stationarity only needs
to check that f (u, θ) does not depend on u. Similar arguments
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apply to the test of white noise. For another example, we pro-
posed a frequency domain method for the problem of model
validation of nonstationary linear models. However, technically
it is difficult to approach this problem from the time domain.
Furthermore, for many time series signals in engineering appli-
cations, the most important information is embedded in the fre-
quency domain. Therefore, in engineering and signal process-
ing applications, frequency domain methods are typically more
favorable and are widely used. Therefore, frequency-domain-
based tests are preferable in many such applications.

6. Bootstrap and Tuning Parameter Selection

In Section 6.1, we propose a simulation based bootstrap method
to implement simultaneous statistical inferences. The motiva-
tion of the bootstrap procedure is to alleviate the slow con-
vergence of the maximum deviation to its Gumbel limit in
Theorem 5.1. We discuss methods for tuning parameter selec-
tion in Section 6.2.

6.1. The Bootstrap Procedure

Although Theorem 5.1 shows that SCR can be constructed using
the Gumbel distribution, the convergence rate in Theorem 5.1
is too slow to be useful in moderate samples. We propose a
bootstrap procedure to alleviate the slow convergence of the
maximum deviations. One important application of the boot-
strap is to construct SCR in moderate sample cases.

Let {ε1, . . . , εN} be iid N (0, 1) random variables. Defining

r̂ε(u, k) := 1
n

N∑
i=1

τ

(
i − uN�

n

)
τ

(
i + k − uN�

n

)
εiεi+k

(39)

and

f̂ ε
n (u, θ) := 1

2π

Bn∑
k=−Bn

r̂ε(u, k)a(k/Bn) exp(
√−1kθ), (40)

it can be easily verified that the following analogy of Theo-
rem 5.1 holds.

P

[
max

(u,θ)∈GN

n
Bn

|f̂ ε
n (u, θ) − E(f̂ ε

n (u, θ))|2
[f ε(u, θ)]2

∫ 1
−1 a2(t)dt

−2 log Bn − 2 log Cn + log(π log Bn + π log Cn) ≤ x
]

→ e−e−x/2
.

(41)

Therefore, we propose to construct the SCR for {f̂n(u, θ)} using
the empirical distribution of f̂ ε

n (u, θ). More specifically, we gen-
erate {εi}N

i=1 independently for NMC times. Let f̄ ε
n (u, θ) be the

sample mean of {f̂ ε
n,m(u, θ), m = 1, . . . , NMC} from the NMC

Monte Carlo experiments. Then we compute the empirical dis-
tribution of

max
(u,θ)∈GN

|f̂ ε
n,m(u, θ) − f̄ ε

n (u, θ)|2
[f̄ ε

n (u, θ)]2
, m = 1, . . . , NMC (42)

to approximate the distribution of

max
(u,θ)∈GN

|f (u, θ) − f̂n(u, θ)|2
[f̂n(u, θ)]2

, (43)

which can be employed to construct the SCR. For example, for
a given α ∈ (0, 1), we estimate the (1 − α)th quantile γ 2

1−α

from the bootstrapped distribution using f̂ ε
n (u, θ), which also

approximately satisfies

P

(
max

(u,θ)∈GN

|f (u, θ) − f̂n(u, θ)|2
[f̂n(u, θ)]2

≤ γ 2
1−α

)
= 1 − α. (44)

Therefore, the constructed SCR is

max{0, (1 − γ1−α)f̂ (u, θ)} ≤ f (u, θ) ≤ (1 + γ1−α)f̂ (u, θ),
∀(u, θ) ∈ GN . (45)

Note that in small sample cases, the lower bound for the con-
fidence region can be 0 if the estimated γ1−α is larger than 1.
This happens when N is not large enough and large Bn and
Cn are selected. For large sample sizes, the estimated γ 2

1−α is
typically much smaller than 1. In that case, we can further use
the following approximation

|f (u, θ) − f̂n(u, θ)|2
[f̂n(u, θ)]2

≈ [log(f (u, θ)/f̂n(u, θ)]2. (46)

Then the SCR can be constructed as

exp(−γ1−α)f̂n(u, θ) ≤ f (u, θ) ≤ exp(+γ1−α)f̂n(u, θ),
∀(u, θ) ∈ GN . (47)

Overall, the practical implementation is given as follows

1. Select Bn and n using the tuning parameter selection method
described in Section 6.2.

2. Compute the critical value using bootstrap described in Sec-
tion 6.1.

3. Compute the spectral density estimates by Equation (17).
4. Compute the SCR defined in Section 6.1 using the spectral

density estimates and the critical value obtained by the boot-
strap.

Note that the validity of the proposed bootstrap procedure
is asymptotically justified by Theorem 5.1. On the other hand,
theoretical justification for the superiority of the bootstrap pro-
cedure for moderate samples is extremely difficult, as it requires
deriving higher order asymptotics of the maximum deviation
of the time-varying spectral densities. We will investigate this
problem in some future work.

6.2. Tuning Parameter Selection

Choosing Bn and n in practice is a nontrivial problem. In our
Monte Carlo experiments and real data analysis, we find that
the minimum volatility (MV) method (Politis, Romano, and
Wolf 1999; Zhou 2013) performs reasonably well. Specifically,
the MV method uses the fact that the estimator f̂n(u, θ) becomes
stable when the block size n and the bandwidth Bn are in an
appropriate range. More specifically, we first set a proper interval
for n as [nl, nr]. In our simulations and data analysis, we choose
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nl = 2Nη and nr = 3Nη if N ≤ 1000, nl = 2.5Nη and
nr = 4Nη if 1000 < N ≤ 2000 and nl = 3Nη and nr = 5Nη if
N > 2000, where η = 0.48. Although the rule for setting nl and
nr is ad-hoc, it works well in our simulations and data analysis.
In practice, one can also either choose nl and nr based on prior
knowledge of the data, or select them by visually evaluating
the fitted evolutionary spectral densities. A reasonable value of
n should not produce too rough or too smooth estimates of
the spectral density. We remark that nl and nu are only upper
and lower bounds of the candidate bandwidths. Simulations
show that the simulated coverage probabilities are typically not
sensitive to the choices of nl and nr . To use the MV method,
we first form a two-dimensional grid of all candidate pairs of
(n, Bn) such that n ∈ [nl, nr] and Bn < n/ log(n). Then,
for each candidate pair (n, Bn), we estimate f̂n(u, θ) using the
candidate pair for a fixed time-frequency grid of (u, θ). Next, we
compute the average variance of the spectral density estimates
f̂n(u, θ) over the neighborhood of each candidate pair on the
two-dimensional grid of all candidate pairs of (n, Bn). Finally,
we choose the pair of (n, Bn) which gives the lowest average
variance. We refer to Politis, Romano, and Wolf (1999) and Zhou
(2013) for more detailed discussions of the MV method.

Note that cross-validation is another popular method for
choosing bandwidths (Dahlhaus and Richter 2019). However,
it is a difficult task to implement cross-validation in the context
of time-varying spectral density estimation. Finally, it is well-
known that choosing theoretically optimal bandwidths is an
extremely difficult problem. We hope to investigate this problem
in some future work.

7. Simulations and Data Analysis

In this section, we study the performance of the proposed
SCR via simulations and real data analysis. In Section 7.1, the
accuracy of the proposed bootstrap procedure is studied; the
accuracy of tuning parameter selection is considered in Sec-
tion 7.2; the accuracy and power for hypothesis testing is studied
in Section 7.3; finally, we perform real data analysis in Sec-
tion 7.4. Throughout this section, the kernel τ(·) is chosen to be
a rescaled Epanechnikov kernel such that

∫
τ 2(x)dx = 1, and

the kernel a(·) is a rescaled tri-cube kernel such that a(0) = 1.
The two kernel functions are defined as follows.

τ(x) :=
{√

30
4 (1 − 4x2), if |x| < 1/2,

0, otherwise,

a(x) :=
{

(1 − |x|3)3, if |x| < 1,
0, otherwise.

(48)

In all the simulations, we ran Monte Carlo experiments for
NMC = 10000. The results for SCR and hypothesis testing are
obtained by averaging over 1000 independent datasets.

7.1. Accuracy of Bootstrap

In this subsection, we study the accuracy of the proposed boot-
strap procedure for moderate finite samples (e.g., N = 400 or
N = 800). We consider different examples of locally stationary
time series models described in Examples 7.1–7.5.

Example 7.1 (Time-varying AR model). We have

Xi = a(i/N)Xi−1 + εi, (49)

where {εi} are iid N (0, 1). In this example, we choose a(u) =
0.3 cos(2πu). Then the model is locally stationary in the sense
that the AR(1) coefficient a(u) = 0.3 cos(2πu) changes
smoothly on the interval [0, 1]. The simulated uncoverage
probabilities of the SCR are shown in Table 1.

Example 7.2 (Time-varying ARCH model). Consider the follow-
ing time-varying ARCH(1) model:

Xi = εi

√
a0(i/N) + a1(i/N)X2

i−1, (50)

where {εi} are iid standard normally distributed random vari-
ables, a0(u) > 0, a1(u) > 0 and a0(u) + a1(u) < 1.
Note that {Xi} is a white noise sequence. In this example, we
choose a0(u) = 0.6 and a1(u) = 0.3 sin(πu). The simulated
uncoverage probabilities of the SCR are shown in Table 2.

Example 7.3 (Time-varying Markov switching model). Suppose
{Si} is a Markov chain on state space {0, 1} with transition
matrix P. Consider the following time-varying Markov switch-
ing model

Xi =
{

b1(i/n)Xi−1 + εi, if Si = 0,
b2(i/n)Xi−1 + εi, if Si = 1,

(51)

where {εi} are iid standard normally distributed random vari-
ables, |b1| < 1, and |b2| < 1. In this example, we choose P =[

0.9 0.1
0.5 0.5

]
, b1(u) = 0.4 cos(2πu), and b2(u) = 0.1 sin(2πu).

The simulated uncoverage probabilities of the SCR are shown in
Table 3.

Table 1. Simulated uncoverage probabilities for Example 7.1.

N = 400 N = 800

n Bn α = 0.05 α = 0.1 α = 0.05 α = 0.1

72 36 0.03 0.06 0.03 0.06
72 32 0.04 0.07 0.04 0.08
72 28 0.04 0.08 0.05 0.10

54 36 0.03 0.06 0.03 0.06
54 32 0.04 0.08 0.04 0.08
54 28 0.04 0.09 0.05 0.09

36 32 0.05 0.11 0.05 0.11
36 28 0.07 0.13 0.07 0.14

Table 2. Simulated uncoverage probabilities for Example 7.2.

N = 400 N = 800

n Bn α = 0.05 α = 0.1 α = 0.05 α = 0.1

72 36 0.03 0.06 0.02 0.05
72 32 0.04 0.08 0.04 0.08
72 28 0.05 0.10 0.05 0.11

54 36 0.03 0.06 0.03 0.07
54 32 0.05 0.09 0.04 0.09
54 28 0.05 0.10 0.04 0.10

36 32 0.06 0.12 0.06 0.12
36 28 0.08 0.15 0.08 0.14
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Table 3. Simulated uncoverage probabilities for Example 7.3.

N = 400 N = 800

n Bn α = 0.05 α = 0.1 α = 0.05 α = 0.1

72 36 0.04 0.09 0.04 0.09
72 32 0.05 0.11 0.05 0.12
72 28 0.06 0.12 0.06 0.13

54 36 0.06 0.10 0.05 0.10
54 32 0.06 0.11 0.06 0.11
54 28 0.06 0.12 0.07 0.13

36 32 0.07 0.14 0.08 0.14
36 28 0.07 0.14 0.08 0.15

Table 4. Simulated uncoverage probabilities for Example 7.4.

N = 400 N = 800

n Bn α = 0.05 α = 0.1 α = 0.05 α = 0.1

72 36 0.05 0.11 0.06 0.12
72 32 0.06 0.12 0.06 0.13
72 28 0.07 0.14 0.08 0.15

54 36 0.05 0.10 0.06 0.12
54 32 0.05 0.11 0.06 0.12
54 28 0.06 0.12 0.07 0.13

36 32 0.08 0.14 0.08 0.14
36 28 0.08 0.14 0.09 0.17

Table 5. Simulated uncoverage probabilities for Example 7.5.

N = 400 N = 800

n Bn α = 0.05 α = 0.1 α = 0.05 α = 0.1

72 36 0.04 0.08 0.05 0.08
72 32 0.05 0.11 0.05 0.10
72 28 0.06 0.13 0.05 0.11

54 36 0.03 0.07 0.04 0.09
54 32 0.05 0.10 0.06 0.11
54 28 0.06 0.13 0.07 0.13

36 32 0.06 0.11 0.07 0.14
36 28 0.09 0.16 0.09 0.17

Example 7.4 (Time-varying threshold AR model). Suppose {εi}
are iid standard normally distributed random variables and
consider the following threshold AR model

Xi = a(i/N) max(0, Xi−1) + b(i/N) max(0, −Xi−1) + εi,
(52)

where supu∈[0,1][|a(u)|+|b(u)|] < 1. In this example, we choose
a(u) = 0.3 cos(2πu) and b(u) = 0.3 sin(2πu). The simulated
uncoverage probabilities of the SCR are shown in Table 4.

Example 7.5 (Time-varying bilinear process). Let {εi} be iid
standard normally distributed random variables and consider

the following model
Xi = b(i/N)Xi−1 + εi + c(i/N)Xi−1εi−1, (53)

where b2(u) + c2(u) < 1. In this example, we choose b(u) =
0.3 cos(2πu) and c(u) = 0.1 sin(2πu). The simulated uncover-
age probabilities of the SCR are shown in Table 5.

According to the results in Tables 1–5, one can see that the
proposed bootstrap works well when Bn and n are chosen in a
relatively wide range. In the next subsection, we discuss the MV
method for selecting Bn and n in practice.

7.2. Accuracy of Tuning Parameter Selection

We apply the MV method described in Section 6.2 to select the
tuning parameters for Examples 7.1–7.5. For all examples, N =
400 and N = 800 are considered. The bootstrap accuracy is
shown in Table 6. Furthermore, according to Equation (45), we
also included the average width of the SCR over (u, θ) ∈ GN in
Table 6. From Table 6, we can see that the coverage probabilities
of the SCR with bandwidths selected by the MV method are
accurate. Furthermore, the average width of the SCR decreases
as N increases.

7.3. Accuracy and Power of Hypothesis Testing

In this subsection, we study the accuracy and power of hypoth-
esis testing using the proposed SCR. We consider Example 7.6
for testing stationarity and Example 7.7 for testing time-varying
white noise. Furthermore, we also consider another example
of nonparametric ARMA model validation, which is given in
Example 7.8.

Example 7.6 (Time-varying ARCH model). Consider the follow-
ing model

Xi = σiεi, σ 2
i = a0(i/N) + a1(i/N)X2

i−1, (54)
where a0(u) = 0.3 and a1(u) = 0.2 + δu. Observe that when
δ = 0, the model is stationary. When δ = 0, the accuracy of the
hypothesis testing for stationarity is studied for two cases, one
with N = 400 and the other with N = 800, where n and Bn are
selected by the MV method. We have shown the simulated Type
I error rates of the SCR in Table 7. Next, we study the power of
the hypothesis testing for stationarity using the proposed SCR
by increasing δ. We study both 0.05 and 0.1 level tests. The
simulated powers of the SCR for N = 800 and N = 600 are
shown in Figure 1. One can see that, for both N = 800 and
N = 600, the simulated Type I error rates of the SCR (when
δ = 0) are accurate. Furthermore, the simulated power of the
SCR increases with N.

Table 6. Simulated uncoverage probabilities with tuning parameters selected by the MV method (numbers in the parentheses represent the average width of the SCR).

N = 400 N = 800

n Bn α = 0.05 α = 0.1 n Bn α = 0.05 α = 0.1

Example 7.1 (Table 1) 54 30 0.06 (0.51) 0.10 (0.45) 72 30 0.05 (0.47) 0.09 (0.43)
Example 7.2 (Table 2) 52 32 0.05 (0.37) 0.09 (0.33) 69 30 0.04 (0.35) 0.09 (0.30)
Example 7.3 (Table 3) 54 32 0.06 (0.52) 0.11 (0.47) 72 32 0.05 (0.49) 0.12 (0.43)
Example 7.4 (Table 4) 50 32 0.06 (0.53) 0.12 (0.45) 70 32 0.06 (0.48) 0.12 (0.43)
Example 7.5 (Table 5) 52 32 0.04 (0.52) 0.09 (0.46) 69 31 0.06 (0.44) 0.11 (0.40)
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Table 7. Simulated accuracy of hypothesis testing.

Nominal level α = 0.05 α = 0.1 α = 0.05 α = 0.1

Example 7.6 N = 400 0.06 0.12 N = 800 0.04 0.09
Example 7.7 N = 800 0.05 0.10 N = 1200 0.04 0.09
Example 7.8 N = 400 0.04 0.09 N = 800 0.06 0.12
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Figure 1. Simulated powers for testing stationarity for Example 7.6.

Example 7.7 (Time-varying MA model). Consider the following
model:

Xi = a0(i/N)εi + a1(i/N)εi−1, (55)

where we let a0(u) = 0.7 + 0.9 cos(2πu) and a1(u) = δa0(u).
Clearly, when δ = 0, the model generates a time-varying white
noise. When δ = 0, we study the accuracy of the hypothesis
testing for time-varying white noise using the proposed SCR.
The accuracy by the SCR is shown in Table 7, one with N =
800 and the other with N = 1200. The tuning parameters n
and Bn are selected by the MV method. We then test time-
varying white noise using our proposed SCR by increasing δ for
N = 800 and N = 600. The simulated powers of the SCR are
shown in Figure 2. According to Figure 2, one can see that the
simulated coverage probabilities for N = 600 are slightly below
the nominal level. This is because the structure of the time series
in this example is complicated. A sample size with N = 600 is
not large enough for the local stationarity of the time series to
be fully captured statistically. On the other hand, for sample size
N = 800, the simulated Type I error rates are accurate and the
powers are significantly higher than the case of N = 600.

Example 7.8 (Validating time-varying AR model). Consider the
following time-varying AR model

p∑
j=0

aj(i/N)Xi−j = σ(i/N)εi, (56)

where a0(u) = 1, aj(·) and σ(·) are smooth functions, εi are
iid with mean 0 and variance 1. Then {Xi} is a locally stationary
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Figure 2. Simulated powers for testing TV white noise for Example 7.7.

time series with spectral density

f (u, θ) = σ 2(u)

2π

∣∣∣∣∣∣
p∑

j=0
aj(u) exp(

√−12πθ j)

∣∣∣∣∣∣
−2

. (57)

In this example, we generate time series with p = 1, a1(u) =
0.3 + 0.2u, σ(u) = 1 + 0.3u + 0.2u2, and length N = 400 or
N = 800.

For each generated time series, we fit a time-varying AR
model with p = 1 by minimizing the local Whittle likelihood
(Dahlhaus 1997). We can then test if the spectral density of
the fitted nonparametric time-varying AR model falls into the
proposed SCR. The simulated coverage probabilities of the SCR
are shown in Table 7, where n and Bn are selected by the
MV method. We can see that, under the null hypothesis, the
nonparametric time-varying AR model is validated since the
simulated Type I error rates match quite well with the nominal
levels of the proposed SCR test.

7.4. Real Data Analysis

In this subsection, we present some real data analysis. We study
an earthquake and explosion dataset from seismology in Exam-
ple 7.9 and then daily SP500 return from finance in Exam-
ple 7.10. Observe that all time series are relatively long with
N > 2000. For tuning parameter selection, we use the MV
method to search (n, Bn) within the region Bn < n/ log(n).
Hypothesis tests are performed, including testing stationarity,
time-varying white noise, and time-frequency separability on all
the datasets.

Example 7.9 (Earthquakes and explosions (Shumway and Stoffer
2017)). In this example, we study an earthquake signal and an
explosion signal from a seismic recording station (Shumway
and Stoffer 2017). The recording instruments in Scandinavia
are observing earthquakes and mining explosions with one of
each shown in Figures 3 and 4, respectively. The two time series
(see Figures 3 and 4) each has length N = 2048 representing



144 J. YANG AND Z. ZHOU

time
500 1000 1500 2000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Earthquake Data

10

Time-frequency Estimates

time

6
2

5

freq

10
15

0.04

0.02

0

time
2 4 6 8 10 12

fr
eq

2

4

6

8

10

12

14

16
Time-frequency Estimates

10

time

6

95% SCR

2
5

freq

10
15
0

0.1

0.2

Figure 3. Analysis of earthquake data.
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Figure 4. Analysis of explosion data.

two phases or arrivals along the surface, denote by phase P:
{Xi : i = 1, . . . , 1024} and phase S: {Xi : i = 1025, . . . , 2048}.
The general problem of interest is in distinguishing or dis-
criminating between waveforms generated by earthquakes and
those generated by explosions. The original data came from the

technical report by Blandford (1993). According to Blandford
(1993), the original earthquake and explosion signals have been
filtered with a 3-pole highpass Butterworth filter with the corner
frequency at 1 Hz to improve the signal-to-noise ratio. Then
the amplitudes of the waveforms have been rescaled so the
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Figure 5. Explosion data: selected times.

Figure 6. Explosion data: selected frequencies.

maximum amplitude for each signal is equal. According to
Blandford (1993, Figure 2a and b), the unit for time is 0.02
second and the values of the earthquake and explosion data are
rescaled to be no more than 1.

From the time domain (see Figures 3 and 4), one can observe
that rough amplitude ratios of the first phase P to the second
phase S are different for the two datasets, which tend to be
smaller for earthquakes than for explosions. From the spectral
density estimates and their confidence regions, the S component
for the earthquake (see Figure 3) shows power at the low fre-
quencies only, and the power remains strong for a long time.

In contrast, the explosion (see Figure 4) shows power at higher
frequencies than the earthquake, and the power of the P and S
waves does not last as long as in the case of the earthquake.

Moreover, we notice from the confidence region at selected
times and frequencies that the spectral density of explosion
has the similar shape at different times, as well as at different
frequencies (see Figures 5 and 6). However, the spectral density
of earthquakes does not seem to have this property (see Figures 7
and 8). This may suggest that the explosion data are correlation
stationary or time-frequency separable. We further perform
hypothesis tests on both datasets to confirm our observation
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Figure 7. Earthquake data: selected times.

Figure 8. Earthquake data: selected frequencies.

(see Table 8). The p-values for testing stationarity and time-
varying white noise for both earthquake and explosion are quite
small, which implies that earthquake and explosion time series
are not stationary and not time-varying white noise. However,
the p-values for the hypothesis of time-frequency separability
(i.e., correlation stationary) is 0.61 for explosion, but 0.064 for
earthquake. This interesting result discovers a potential impor-
tant difference between earthquake and explosion: at least from
the analyzed data, explosion tends to be time-frequency separa-
ble (correlation stationary) but earthquake does not.

There are two main benefits from knowing that explosion
time series are time-frequency separable but earthquake time
series are not. First, this reveals an important structural prop-
erty of the time-frequency behavior for explosion signals. Since
time-frequency separability implies the time curves for different
frequencies are parallel and the frequency curves for different
times are parallel as well, this directly suggests a parsimonious
model for explosion time series using two one-dimensional
models. Second, for the classification of earthquake and explo-
sion signals, time-frequency separability provides a nonlinear
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Table 8. Real data: p-values for testing (a) stationarity, (b) time-varying white noise,
(c) time-frequency separability (correlation stationarity).

H0 Stationarity TV White noise Separability

Earthquake 0.0011∗∗ 0.012∗ 0.064+
Explosion 0.0005∗∗∗ 0.033∗ 0.61
SP500 0.0001∗∗∗ 0.99 0.99
SP500 (Abs) 0.0004∗∗∗ 0.037∗ 0.048∗

Signif. codes: (∗ ∗ ∗) < 0.001 ≤ (∗∗) < 0.01 ≤ (∗) < 0.05 ≤ (+) < 0.1.

feature of the explosion that could potentially serve the purpose.
Since most commonly used features for classification are linear
features, time-frequency separability is potentially important for
feature extraction to improve the accuracy in classification tasks.
However, since we only have analyzed one pair of earthquake
and explosion signals, further studies with a large database of
earthquake and explosion signals are needed to confirm this
property for explosions which we leave to a future work.

Example 7.10 (SP500 daily returns). In this example, we analyze
daily returns of SP500 from September 23rd, 1991 to August
17th, 2018. We plot the original time series, the spectral density
estimates and their confidence regions in Figure 9. Observing
that the SCR in Figure 9 appears to be quite flat over frequencies,
it is reasonable to ask if the time series may be modeled as
time-varying white noise. Actually, in the finance literature, it
is commonly believed that stock daily returns behave like time-
varying white noise. We further confirm this observation by
performing hypothesis tests. The results (see Table 8) show that
the SP500 time series is not stationary but it is likely to be a time-
varying white noise since the p-value for testing time-varying

white noise is 0.99. Furthermore, the p-value for testing time-
frequency separability is also quite large which is 0.99.

Next, we turn our focus to the absolute value of SP500 daily
returns. Volatility forecasting, that is, forecasting future absolute
values or squared values of the return, is a key problem in
finance. The celebrated ARCH/GARCH models are equivalent
to exponential smoothings of the absolute or squared returns.
The optimal weights in the smoothing are determined fully by
the evolutionary spectral density. Hence, to optimally forecast
the evolutionary volatility, one way is to fit the absolute returns
by an appropriate nonstationary linear model, then apply the
fitted model to forecast the future volatility. To date, to our
knowledge, there exists no methodology for validating nonsta-
tionary linear models. In the following, we demonstrate that the
proposed SCR is a useful tool for validating nonstationary linear
models for absolute SP500 daily returns.

We first remove the local mean of the original SP500 time
series by kernel smoothing. The spectral density estimates and
the SCRs are shown in Figures 10–12. We observe from the
plots that the spectral density of the absolute SP500 returns
behaves quite differently from the original SP500 time series.
For example, unlike the case for the original SP500 time series,
the SCR for the absolute SP500 in Figure 11 is not flat over
frequencies anymore. We perform the same hypothesis tests
again to the absolute SP500 time series. The results (see Table 8)
show that the p-value for testing time-varying white noise is
0.037, which is much smaller than that of the original SP500
time series. Furthermore, the p-value for testing time-frequency
separability is 0.048 which is also much smaller than the one for
the original SP500 data.

Figure 9. Analysis of daily returns of SP500.
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Figure 10. Analysis of absolute SP500 returns.

Figure 11. Absolute SP500 return: selected times.
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Figure 12. Absolute SP500 return: selected frequencies.

Table 9. p-values for validating time-varying ARMA models to absolute SP500.

Model p-value Model p−value

tv-AR(1) 0.0066∗∗ tv-ARMA(1, 1) 0.019∗
tv-AR(2) 0.0015∗∗ tv-ARMA(2, 1) 0.79
tv-AR(3) 0.0015∗∗ tv-ARMA(3, 1) 0.77
tv-AR(4) 0.0012∗∗ tv-ARMA(4, 1) 0.78
tv-AR(5) 0.0012∗∗ tv-ARMA(5, 1) 0.84

Signif. codes: (∗ ∗ ∗) < 0.001 ≤ (∗∗) < 0.01 ≤ (∗) < 0.05 ≤ (+) < 0.1.

Finally, we fit time-varying nonstationary linear models for
the absolute SP500 daily returns with mean removed by kernel
smoothing. We first fit various time-varying AR or ARMA
models

p∑
i=0

ai(t/N)Xt−i =
q∑

j=0
bj(t/N)εt−j (58)

to the absolute returns by minimizing the local Whittle likeli-
hood (Dahlhaus 1997). We then validate if the fitted spectral
densities from the time-varying AR or ARMA models fall into
the proposed SCR. The p-values for validating time-varying
AR/ARMA models are shown in Table 9. One can see that, the
p-values for the tv-AR models are quite small, which implies
that no tv-AR models up to order 5 is appropriate for fitting
absolute SP500 daily returns. For tv-ARMA models, the p-value
for the tv-ARMA(1, 1) model equals 0.019. This suggests that
this tv-ARMA model is not appropriate for fitting the absolute
SP500 daily returns either. In contrast, the corresponding p-
value for validating the tv-ARMA(2, 1) model is 0.79. This
interesting observation suggests that the tv-ARMA(2, 1) model
may be appropriate to fit the absolute returns. We further plot
the spectral densities of the fitted time-varying AR(1), AR(4),
AR(5), ARMA(1, 1), ARMA(2, 1), and ARMA(3, 1) models in
Figure 13. From Figure 13, one can see that the fitted spec-
tral densities by the tv-AR models are quite different from the

STFT-based spectral density estimates. For tv-ARMA models,
the spectral density estimates by the tv-ARMA(1, 1) model are
not close to the STFT-based spectral density estimates either.
Therefore, based on the proposed SCR, we conclude that the
tv-ARMA(2, 1) model is an appropriate candidate for the ana-
lyzed data and can be used for short-term future volatility
forecasting.

8. Proofs of Main Results

8.1. Proof of Theorem 3.1

We prove Theorem 3.1 in two steps. In the first step, we show
in Section 8.1.1 that Theorem 3.1 is true for q = 1. In this case,
we let 
p = {c ∈ R

p : |c| = 1}, Zu,J = (Z(n)
u,j1 , . . . , Z(n)

u,jp)
T

for J = (j1, . . . , jp) satisfies 1 ≤ j1, . . . , jp ≤ 2m (recall that
m = (n − 1)/2�). We prove for any fixed p ∈ N, as n → ∞,
we have that

sup
u

sup
J

sup
c∈
p

sup
x

|P(cTZu,J ≤ x) − �(x)| = o(1). (59)

In the second step of the proof, we show in Section 8.1.2 that
for fixed q ∈ N, for any given 0 < u1 < · · · < uq < 1, we
have {(c(i))TZui,J , i = 1, . . . , q} are asymptotically independent
uniformly over {c(i) ∈ R

p : |c(i)| = 1} for i = 1, . . . , q. Finally,
Theorem 3.1 is proved by combining the two parts.

8.1.1. Proof of Equation (59)
We denote 2π j/n by θj in this proof. Without loss of generality,
we restrict J = {j1, . . . , jp} ∈ {1, . . . , m}. Let c = (c1, . . . , cp),
define μu,k := ∑p

�=1
c� cos(kθj� )√

π f (u,θjl )
. Then μu,k ≤ ∑p

�=1
|c�|√
π f∗

≤
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Figure 13. Fitting absolute SP500 daily returns to time-varying ARMA models.

p√
π f∗

=: μ∗, ∀c ∈ 
p, ∀J. Furthermore, defining

Tu,n :=
N∑

k=1
μu,kτ

(
k − uN�

n

)
Xk,

T̃u,n :=
N∑

k=1
μu,kτ

(
k − uN�

n

)
X̃[�]

k , (60)

and η :=
( ‖Tu,n−T̃u,n‖√

n

)1/2
, we have the following key lemmas.

Lemma 8.1. Under the assumptions of Theorem 3.1, we have

lim
n→∞

sup
J

sup
c

sup
u

∣∣∣∣‖Tu,n‖2

n
− 1

∣∣∣∣
2

= 0. (61)

Proof. See Appendix A.1 of the supplementary materials.

Lemma 8.2. Under the assumptions of Theorem 3.1, we have

lim
�→∞

sup
J

sup
c

sup
u

‖Tu,n − T̃u,n‖√
n

= 0. (62)

Proof. See Appendix A.2 of the supplementary materials.

Lemma 8.3. Under the assumptions of Theorem 3.1, we have

sup
x

∣∣∣∣P
(

Tu,n√
n

≤ x
)

− �

(
x

‖Tu,n‖/√n

)∣∣∣∣
= O

(
P

(∣∣∣∣∣Tu,n − T̃u,n√
n

∣∣∣∣∣ ≥ η

)
+ δn + η2

)
,

(63)

where δn → 0 as n → ∞ uniformly over J, c, and u.

Proof. See Appendix A.3 of the supplementary materials.

Using the above results, we can then prove Equation
(59) as follows. First, by Chebyshev inequality and η =( ‖Tu,n−T̃u,n‖√

n

)1/2
, we have

P

(∣∣∣∣∣Tu,n − T̃u,n√
n

∣∣∣∣∣ ≥ η

)
≤ E(Tu,n − T̃u,n)2/n

η2 = η2. (64)

Next, according to Lemma 8.1, uniformly over J, c and u, for any
fixed �, as n → ∞, we have that

sup
x

∣∣∣∣P
(

Tu,n√
n

≤ x
)

− �

(
x

‖Tu,n‖/n

)∣∣∣∣
→ sup

x

∣∣∣∣P
(

Tu,n√
n

≤ x
)

− �(x)

∣∣∣∣ .
(65)
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By Lemma 8.3, we have that

sup
x

∣∣∣∣P
(

Tu,n√
n

≤ x
)

− �

(
x

‖Tu,n‖/n

)∣∣∣∣ = O(2η2 + δn). (66)

Note that δn → 0 as n → ∞. Also, by Lemma 8.2, uniformly
over J, c, u, n, we have η → 0 as � → ∞. Finally, letting n → ∞
then � → ∞, we have that supx

∣∣∣P (Tu,n√
n ≤ x

)
− �(x)

∣∣∣ → 0,
uniformly over J, c, and u.

8.1.2. Proof of Asymptotically Independence of
{(c(i))T Zui ,J, i = 1, . . . , q}

We can write Tui,n and T̃ui,n defined in Equation (60) as
Tui,n,c(i) and T̃ui,n,c(i) . Then by Lemma 8.2, it suffices to show
that {T̃ui,n,c(i) , i = 1, . . . , q} are asymptotically independent
uniformly over {c(i) ∈ R

p : |c(i)| = 1}. Note that in the
definition of T̃ui,n,c(i) , X̃k is �-dependent, therefore, T̃u1,n,c(i) and
T̃u2,n,c(i) with u2 > u1 are independent if (u2−u1)N� > �+2n.
Since 0 < u1 < · · · < uq < 1 are fixed, mini 	=j |ui − uj| > 0
is bounded away from zero. Therefore, {T̃ui,n,c(i) , i = 1, . . . , q}
are independent if � < (mini 	=j |ui − uj|)N� − 2n. Choosing
� = o(n) and n = o(N), we have {T̃ui,n,c(i) , i = 1, . . . , q} are
asymptotically independent.

8.2. Proof of Theorem 4.1

Throughout the proof, we use ‖ ·‖ to denote ‖ ·‖2 for simplicity.
We define Xu,i,n := τ

(
i−n/2�

n

)
XuN�+i−n/2�. For simplicity

we will omit the index n and use Xu,i for Xu,i,n. Define Yu,i :=
Yu,i(θ) = 1

2π

∑Bn
k=−Bn

Xu,iXu,i+ka(k/Bn) cos(kθ), gn(u, θ) :=∑n
i=1 Yu,i(θ), and hn(u, θ) := 1√

nBn
gn(u, θ) − √

n/Bnf̂n(u, θ),
we have that√

n/Bn{f̂n(u, θ) − E(f̂n(u, θ))}
= gn(u, θ) − E(gn(u, θ))√

nBn
− hn(u, θ) + E(hn(u, θ)).

(67)

Next, denote X̃[�]
k as the �-dependent conditional expectation of

Xk, X̃[�]
u,i as the �-dependent conditional expectation of Xu,i, and

Ỹu,i as the correspondence of sum using X̃[�]
u,i instead of Xu,i, and

g̃n as the correspondence of gn using Ỹu,i instead of Yu,i. Note
that under GMC(2) and supi E|Xi|4+δ < ∞, we know GMC(4)

holds. Then we have the following results.

Lemma 8.4. Under the assumptions of Theorem 4.1, GMC(4)

holds with 0 < ρ < 1, then

sup
θ

sup
u

‖hn(u, θ)‖ = (nBn)
−1/2O(Bn), (68)

sup
θ

sup
u

sup
i

‖Yu,i − Ỹu,i‖ = O(Bnρ
�/4), (69)

sup
θ

sup
u

‖gn(u, θ) − g̃n(u, θ)‖ = o(1). (70)

Proof. See Appendix A.4 of the supplementary materials.

Next, we apply the block method to {Ỹu,i(θ)}. Define

Uu,r(θ) :=
(r−1)(pn+qn)+pn∑

i=(r−1)(pn+qn)+1
Ỹu,i(θ),

Vu,r(θ) :=
r(pn+qn)∑

i=(r−1)(pn+qn)+pn+1
Ỹu,i(θ), 1, . . . , kn, (71)

where kn := n/(pn + qn)�. Let pn = qn = n1−4η/δ

(log n)−8/δ−4� (i.e., same block length) and � = �n =
−9 log n/ log ρ�. (Note Bn = o(pn) since η < δ/(4 + δ).)
Then Uu,r(θ), r = 1, . . . , kn are independent (not identically
distributed) block sums with block length pn, and Vu,r(θ), r =
1, . . . , kn − 1 are independent block sums with block length
qn. Define U ′

u,r(θ) := Uu,r(θ)1(|Uu,r(θ)| ≤ dn) where dn =
√nBn(log n)−1/2�. Then we have the following results.

Lemma 8.5. Under the assumptions of Theorem 4.1, we have
that

sup
u

E(max
θ

|Vu,kn(θ)|) = O(
√

pn�nBn), (72)

sup
u

E(max
θ

|hn(u, θ)|) = o(1), (73)

sup
u

max
r

max
θ

var(Uu,r(θ)) = O(pnBn). (74)

Furthermore, we have that

var(U ′
u,r(θ)) = var(Uu,r(θ))[1 + o(1)], (75)

where the o(1) term holds uniformly over θ , r, and u.

Proof. See Appendix A.5 of the supplementary materials.

Lemma 8.6. Let Uu,i(θ) be one of the block sums with block
length pn. Then we have that

sup
u

sup
i

sup
θ

‖Uu,i(θ)‖2+δ/2 = O(�n
√

pnBn). (76)

Proof. See Appendix A.6 of the supplementary materials.

Using the previous results Equations (68), (70), and (73), we
have that

sup
u

max
θ

√
n/Bn|f̂n(u, θ) − E(f̂n(u, θ))|

≤ supu maxθ |g̃n(u, θ) − E(g̃n(u, θ))| + o(1)√
nBn

+ OP(
√

Bn/n) + oP(1)

≤ supu maxθ |∑kn
r=1 Uu,r(θ) − E(

∑kn
r=1 Uu,r(θ))|√

nBn

+ supu maxθ |∑kn−1
r=1 Vu,r(θ) − E(

∑kn−1
r=1 Vu,r(θ))|√

nBn

+ supu maxθ |Vu,kn(θ)) − E(Vu,kn(θ)))|√
nBn

+ OP(
√

Bn/n) + oP(1).
(77)
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First, we can show that the third term of the right-hand side of
Equation (77) is oP(

√
log n). This is because by Equation (72),

it suffices to show
√

pn�nBn√
nBn

= o(
√

log n) and this can be easily
verified using pn = n1−4η/δ(log n)−8/δ−4, Bn = O(nη) and δ ≤
4.

Next, we show that the right-hand side of the first two
terms of Equation (77) have an order of OP(

√
log n). Let

Hu,n(θ) = ∑kn
r=1[Uu,r(θ) − E(Uu,r(θ))] and H′

u,n(θ) =∑kn
r=1[U ′

u,r(θ) − E(U ′
u,r(θ))]. Let θj = π j/tn, j = 0, . . . , tn

where tn = Bn log(Bn)�. Then, since both Hu,n and H′
u,n have

trigonometric polynomial forms, we can apply the following
result from Woodroofe and Ness (1967, Corollary 2.1).

Lemma 8.7. Let p(λ) = ∑k
v=−k αv exp(ivλ) be a trigonometric

polynomial. Let λi = π(i/rk), |i| ≤ rk. Then max|λ|≤π |p(λ)| ≤
max|i|≤rk |p(λi)/(1 − 3πr−1)|.

Proof. See Woodroofe and Ness (1967, Corollary 2.1).

By setting k = Bn and r = log(Bn) in Lemma 8.7, we get

max
θ

|Hu,n(θ)| ≤ 1
1 − 3π/ log(Bn)

max
j≤tn

|Hu,n(θj)|. (78)

By Equations (74) and (75), there exists a constant C1 such that
sup

u
max

r
max

θ

var(U ′
u,r(θ)) ≤ C1pnBn.

Let αn := (C1nBn log n)1/2, by the union upper bound,

P( max
0≤j≤tn

|H′
u,n(θj)| ≥ 4αn) ≤

tn∑
j=0

P(|H′
u,n(θj)| ≥ 4αn). (79)

Then we apply Bernstein’s inequality (see Lemma A.3 in the
supplementary materials) to P(|H′

u,n(θj)| ≥ 4αn). This leads to,
uniformly over u and θj,

P(|H′
u,n(θj)| ≥ 4αn) ≤ exp

(
−16α2

n
2knC1pnBn + 8

3 dnαn

)

≤ C exp
(

−nBn log n
nBn

)
.

(80)

Therefore, uniformly over u, we have that P(max0≤j≤tn
|H′

u,n(θj)| ≥ 4αn) = O(tn)O(1/n) = o(1). Let U∗
u,n(θ) =

Uu,n(θ) − U ′
u,n(θ) and H∗

u,n(θ) = Hu,n(θ) − H′
u,n(θ). By the

union upper bound and Chebyshev’s inequality

P( max
0≤j≤tn

|H∗
u,n(θj)| ≥ 4αn) ≤

tn∑
j=0

P(|H∗
u,n(θj)| ≥ 4αn)

≤
tn∑

j=0

∑kn
i=1 var(U∗

u,i(θj))

16α2
n

.

(81)

Using Lemma 8.6, supu maxi supθ ‖Uu,i(θ)‖2+δ/2 =
O(�n

√
pnBn), and

var(U∗
u,i1|U∗

u,i|>dn) = d2
nvar

(U∗
u,i

dn
1|U∗

u,i|>dn

)

≤ d2
nE

[(U∗
u,i

dn

)2+δ/2]
, (82)

we have that
tn∑

j=0

∑kn
i=1 var(U∗

u,i(θj))

16α2
n

= O
(

tnkn(
√

pnBn�n)2+δ/2

α2
ndδ/2

n

)

= O
(

(Bn log Bn)(n/pn)(
√

pnBn log n)2+δ/2

(nBn log n)(nBn)δ/4(log n)−δ/4

)

= O
(

(pnBn)1+δ/4(log n)2+δ/2

pn(nBn)δ/4(log n)−δ/4

)

= O(pδ/4
n (Bn/n)δ/4(log n)2+δ/2+δ/4).

(83)

Using pn = n1−4η/δ(log n)−8/δ−4 we have pδ/4
n = (nδ/4−η)

(log n)−2−δ . Therefore,
tn∑

j=0

∑kn
i=1 var(U∗

u,i(θj))

16α2
n

= O
(

tnkn(
√

pnBn�n)2+δ/2

α2
ndδ/2

n

)

= O(n−ηBδ/4
n (log n)−δ/4).

(84)

Finally, Bn = O(nη), δ ≤ 4 implies Bδ/4
n = O(nη), so we have

that
∑tn

j=0

∑kn
i=1 var(U∗

u,i(θj))

16α2
n

= o(1). Therefore, uniformly over
u, we have maxθ |H′

u,n(θ)| = OP(αn) and maxθ |H∗
u,n(θ)| =

OP(αn). Then maxθ |Hu,n(θ)| = maxθ |H′
u,n(θ) + H∗

u,n(θ)| =
OP(αn) = OP(

√
nBn log n). So Equation (77) has the order of

OP(
√

log n).

8.3. Proof of Theorem 4.2

Throughout the proof, we use ‖ ·‖ to denote ‖ ·‖2 for simplicity.
We define Yu,i, gn, hn, X̃[�]

k , Ỹu,i, g̃n the same as in Section 8.2.
Therefore, Lemma 8.4 holds. Next, we apply the block method
to {Ỹu,i(θ)}. Define

Uu,r(θ) :=
(r−1)(pn+qn)+pn∑

i=(r−1)(pn+qn)+1
Ỹu,i(θ),

Vu,r(θ) :=
r(pn+qn)∑

i=(r−1)(pn+qn)+pn+1
Ỹu,i(θ), 1, . . . , kn, (85)

where kn := n/(pn + qn)�. Let ψn = n/(log n)2+8/δ , pn =
ψ2/3

n B1/3
n �, and qn = ψ1/3

n B2/3
n �. Then we have pn, qn → ∞

and qn = o(pn). Since �n = O(log n), we have 2Bn +�n = o(qn)
and kn = n/(pn + qn)� → ∞. Note that Uu,r(θ), r = 1, . . . , kn
are independent (not identically distributed) block sums with
block length pn, and Vu,r(θ), r = 1, . . . , kn are independent
block sums with block length qn. Now the proof of Lemma 8.5
still follows.

Defining an/bn → 1 by an ∼ bn, we have the following
result.

Lemma 8.8. Let the sequence sn ∈ N satisfy sn ≤ n, sn = o(n)

and Bn = o(sn). Under GMC(4) we have that∥∥∥∥∥∥
sn/2∑

i=−sn/2
{Yu,i(θ) − E(Yu,i(θ))}

∥∥∥∥∥∥
2

∼ snBnσ
2
u (θ), (86)

where σ 2
u (θ) = [1 + η(2θ)]f 2(u, θ)

∫ 1
−1 a2(t)dt and η(θ) = 1 if

θ = 2kπ for some integer k and η(θ) = 0 otherwise.
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Proof. See Appendix A.7 of the supplementary materials.

According to Lemmas 8.4 and 8.8, for each block Uu,r , r =
1, . . . , kn, we have that

‖Uu,r − E(Uu,r)‖ =
∥∥∥∥∥∥
∑
j∈Lr

{Ỹu,j − E(Ỹu,j)}
∥∥∥∥∥∥

=
∥∥∥∥∥∥
∑
j∈Lr

{Yu,j − E(Yu,j)}
∥∥∥∥∥∥

+ O

⎛
⎝∑

j∈Lr

‖Yu,j − Ỹu,j‖
⎞
⎠

∼ (pnBnσ
2
u )1/2 + O(pnBnρ

�n/4)

∼ (pnBnσ
2
u )1/2,

(87)

where Lr = {j ∈ N : (r − 1)(pn + qn) + 1 ≤ j ≤ r(pn +
qn) − qn}. Similarly, we can also show that ‖Vu,r − E(Vu,r)‖ ∼
(qnBnσ 2

u )1/2 + O(qnBnρ�n/4). Then, since qn = o(pn), we have
that

var

⎛
⎝kn−1∑

r=1
Vu,r + Vu,kn

⎞
⎠ = (kn − 1)O(qnBnσ

2
u )

+ O((pn + qn)Bn) = o(nBn),
(88)

which implies that
∑

r(Vu,r−E(Vu,r))√
nBn

⇒ 0. Also, by Equation (68),
we have that var(hn(u, θ)) = O(Bn/n) = O((log n)−2−8/δ),
which implies that hn(u, θ) − E(hn(u, θ)) ⇒ 0. Therefore, by
√

n/Bn{f̂n(u, θ) − E(f̂n(u, θ))} = gn(u, θ) − E(gn(u, θ))√
nBn

− hn(u, θ) + E(hn(u, θ)),
(89)

we only need to show that
∑

r(Uu,r−E(Uu,r))√
nBn

⇒ N (0, σ 2
u ). We

can check the conditions of Lemma A.2 of the supplementary
materials (the Berry–Esseen lemma) as follows.

E

(
Uu,r − E(Uu,r)√

nBn

)
= 0,

∑
r

‖Uu,r − E(Uu,r)‖2

nBn
∼ kn

pnBnσ 2
u

nBn
∼ σ 2

u . (90)

By Lemma 8.6, we know ‖Uu,r‖2+δ/2 = O(�n
√

pnBn), which
implies

∑
r

‖Uu,r − E(Uu,r)‖2+δ/2
2+δ/2

(nBn)1+δ/4 = O
(

kn
(�n
√

pnBn)2+δ/2

(nBn)1+δ/4

)

= O(�nk−δ/4
n ). (91)

Note that kn = n/(pn + qn)� ∼ nψ−2/3B−1/3
n ∼

n1/3(log n)(4/3+16/3δ)B−1/3
n , which implies k−1

n =
O((log n)−4/3−16/3δ). Then �nk−δ/4

n = O((log n)

(log n)(−δ/3−4/3)) = O((log n)(−δ/3−1/3)) → 0. Therefore,
the result holds by Lemma A.2 of the supplementary materials.

8.4. Proof of Theorem 5.1

Define Dn = CnBn, θi = iπ
Bn

, i = 0, . . . , Bn, and αn,k =
a(k/Bn) cos(kθ). We use the previous definitions of Xu,k and
the �-dependent X̃[�]

u,k as in Section 8.2. Let gn(u, θ) :=
[2πnf̂n(u, θ)−∑n

k=1 X2
u,k]−E[2πnf̂n(u, θ)−∑n

k=1 X2
u,k], where

� = nγ � for fixed γ > 0 which is close to zero. Note that

f̂n(u, θ) − E(f̂n(u, θ))

= 1
2πn

∑
1≤k,k′≤n

αn,k−k′ [Xu,kXu,k′ − E(Xu,kXu,k′)]

= 1
2πn

(
gn(u, θ) +

n∑
k=1

(X2
u,k − EX2

u,k)

)
.

(92)

Therefore, we have gn(u, θ) = ∑
1≤k,k′≤n,k	=k′ αn,k−k′ [Xu,kXu,k′−

E(Xu,kXu,k′)]. Then let g̃n(u, θ) be the corresponding version
of gn(u, θ) using �-dependent {X̃[�]

u,k} instead of {Xu,k}. Define
X′

u,k = X̃[�]
u,k1∣∣∣X̃[�]

u,k

∣∣∣≤(nBn)α
where α < 1

4 . Next, let X̄u,k :=
X′

u,k − EX′
u,k and define

ḡn = 2
∑

1≤s<k≤n
αn,k−s[X̄u,kX̄u,s − E(X̄u,kX̄u,s)]

= 2
n∑

k=2
X̄u,k

k−1∑
s=1

αn,k−sX̄u,s − 2E
n∑

k=2
X̄u,k

k−1∑
s=1

αn,k−sX̄u,s.

(93)

In the following, we show that gn(u, θ) can be approximated by
g̃n(u, θ).

Lemma 8.9. Under the assumptions of Theorem 5.1, we have
maxu∈U max0≤i≤Bn E|gn(u, θi)− g̃n(u, θi)| = o(n1+γ ρnγ �) and
maxu∈U max0≤i≤Bn

|gn(u,θi)−g̃n(u,θi)|√
nBn

= oP(1).

Proof. See Appendix A.8 of the supplementary materials.

Next, we show that g̃n(u, θ) can be approximated by ḡn(u, θ).

Lemma 8.10. Under the assumptions of Theorem 5.1, we have
that

E

(
max
u∈U

max
θ

|g̃n(u, θ) − ḡn(u, θ)|√
nBn

)
= o(1). (94)

Proof. See Appendix A.9 of the supplementary materials.

According to Lemmas 8.9 and 8.10, together with maxi|g̃n(u, θi) − ḡn(u, θi)| ≤ maxθ |g̃n(u, θ) − ḡn(u, θ)|, we have that
maxu∈U
max0≤i≤Bn

|gn(u,θ)−g̃n(u,θ)|2
nBn

= oP(1) and

P

(
max
u∈U

max
0≤i≤Bn

|g̃n(u, θi) − ḡn(u, θi)|2
nBn

≥ y

)

≤
E

(
maxu∈U maxθ

|g̃n(u,θ)−ḡn(u,θ)|2
nBn

)
y

= o(1).

(95)
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Since maxu maxi |Eg̃n(u, θi) − Eḡn(u, θi)| ≤ E(maxu maxi|g̃n(u, θi) − ḡn(u, θi)|), it suffices to show that, for Dn = BnCn,
we have that

P

[
max

0≤i≤Bn,u∈U
|ḡn(u, θi) − E(ḡn(u, θi))|2

4π2nBnf 2
n (u, θi)

∫ 1
−1 a(t)dt

− 2 log Dn + log(π log Dn) ≤ x

]
→ e−e−x/2

.

Let pn = B1+β
n �, qn = Bn +�, � = nγ � and kn = n/(pn +

qn)�, where γ is small enough and β > 0 is sufficiently close to
zero. Split the interval [1, n] into alternating big and small blocks
Hj and Ij by

Hj = [(j − 1)(pn + qn) + 1, jpn + (j − 1)qn], 1 ≤ j ≤ kn,
Ij = [jpn + (j − 1)qn + 1, j(pn + qn)], 1 ≤ j ≤ kn,

Ikn+1 = [kn(pn + qn) + 1, n].
(96)

Define Ȳu,k := X̄u,k
∑k−1

s=1 αn,k−sX̄u,s. Then ḡn = ∑n
k=1(Ȳu,k −

EȲu,k). For 1 ≤ j ≤ kn + 1, let

Uj(u, θ) :=
∑
k∈Hj

(Ȳu,k − EȲu,k),

Vj(u, θ) :=
∑
k∈Ij

(Ȳu,k − EȲu,k). (97)

Then ḡn = ∑kn
j=1 Uj +∑kn+1

j=1 Vj. Next, define a truncated and
normalized version of Uj as

Ūj(u, θ) := Uj(u, θ)1
( |Uj(u, θ)|√

nBn
≤ 1

(log Bn)4

)

− EUj(u, θ)1
( |Uj(u, θ)|√

nBn
≤ 1

(log Bn)4

)
. (98)

In the following, we show that ḡn(u, θi) − E(ḡn(u, θi)) can be
approximated by

∑kn
j=1 Ūj(u, θi).

Lemma 8.11. Under the assumptions of Theorem 5.1, we have
that

max
u∈U

max
0≤i≤Bn

∣∣∣ḡn(u, θi) − E(ḡn(u, θi)) −∑kn
j=1 Ūj(u, θi)

∣∣∣
√

nBn
= oP(1).

(99)

Proof. See Appendix A.10 of the supplementary materials.

Furthermore, we show in the following that
∑kn

j=1 Ūj(u, θi)

can be ignored if i /∈ [(log Bn)2, Bn − (log Bn)2].
Lemma 8.12. Under the assumptions of Theorem 5.1, we have
that

P

⎛
⎝max

u∈U
max

i/∈[(log Bn)2,Bn−(log Bn)2]

∣∣∣∑kn
j=1 Ūj(u, θi)

∣∣∣
√

nBn

≥ x
√

log(BnCn)

⎞
⎠ = o(1). (100)

Proof. See Appendix A.11 of the supplementary materials.

Finally, we complete the proof of Equation (24) by the follow-
ing result.

Lemma 8.13. Under the assumptions of Theorem 5.1, we have
that

P

⎡
⎢⎣max

u∈U
max

(log Bn)2≤i≤Bn−(log Bn)2

∣∣∣∑kn
j=1 Ūj(u, θi)

∣∣∣2
4π2nBnf 2

n (u, θi)
∫ 1
−1 a(t)dt

− 2 log Dn + log(π log Dn) ≤ x

⎤
⎦ → e−e−x/2

.

(101)

Proof. See Appendix A.12 of the supplementary materials.

Supplementary Materials

The supplementary materials contain additional lemmas and detailed
proofs of the remarks, lemmas, and theorems of the article.
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