
Large-Sample Likelihood Ratio Tests
We will use the following hypothesis-testing framework. The data are Y1, . . . , Yn. The
distribution of these independent and identically distributed random variables depends on
the parameter θ, and we are testing a null hypothesis H0 using a large sample likelihood
ratio test.

Y1, . . . , Yn
i.i.d.∼ Pθ, θ ∈ Θ,

H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩ Θc0,
The data have likelihood function

�(θ) =
n∏
i=1

fθ(yi),

where fθ(yi) is the joint density or probability mass function evaluated at yi.

Let θ̂ denote the usual Maximum Likelihood Estimate (MLE). That is, it is the pa-

rameter value for which the likelihood function is greatest, over all θ ∈ Θ. And, let ̂̂θ
denote the restricted MLE. The restricted MLE is the parameter value for which the like-
lihood function is greatest, over all θ ∈ Θ0. This MLE is restricted by the null hypothesis

H0 : θ ∈ Θ0. It should be clear that �(
̂̂
θ) ≤ �(θ̂).

Tests will be based on

G = −2 log
(
maxθ∈Θ0

∏n
i=1 fθ(yi)

maxθ∈Θ
∏n
i=1 fθ(yi)

)

= −2 log
∏n

i=1 f̂̂
θ
(yi)∏n

i=1 fθ̂(yi)


= −2 log �(

̂̂
θ)

�(θ̂)

= [−2 log �(̂̂θ)]− [−2 log �(θ̂)].
Thus, the test statistic G is the difference between two -2 log likelihood functions. If

you are doing the maximum the likelihood estimation numerically, this means you can
minimize−2 log �(θ) twice, first over all θ ∈ Θ, and then over all θ ∈ Θ0. The test statistic
is the difference between the two minimum values.
If the null hypothesis is true, then the test statistic G has, if the sample size is large,

an approximate chisquare distribution, with degrees of freedom equal to the difference
of the dimension of Θ and Θ0. For example, if the null hypothesis is that 4 elements
of θ equal zero, then the degrees of freedom are equal to 4. More generally, if the null
hypothesis imposes k linear restrictions on θ, then the degrees of freedom equal k.
Think of the usual normal multiple regression model. Here, θ = (β, σ2). Consider the

null hypothesis H0 : Lβ = γ, where L is a k × p matrix. This null hypothesis imposes k
linear restrictions on the parameter, one for each row of L. The dimension of Θ is p+ 1;
the dimension of Θ0 is p + 1− k.
The p-value associated with the test statistic G is Pr{X > G}, where X is a chisquare

random variable with k degrees of freedom. If p < α, we reject H0 and call the results
“statistically significant.”
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Example Let X1, . . . , Xn1 be a random sample from a Gamma distribution with pa-
rameters α1 and β1. Independently of the X values, let Y1, . . . , Yn2 be a random sample
from a Gamma distribution with parameters α2 and β2. We will test H0 : α1 = α2.
The parameter for this problem is θ = (α1, β1, α2, β2), and the null hypothesis imposes

one linear restriction on the parameter. So, the degrees of freedom of the large-sample
likelihood ratio chisquare test will equal one.
The likelihood function is

�(θ) =
n1∏
i=1

1

βα1
1 Γ(α1)

exi/β1xα1−1
i

n2∏
j=1

1

βα2
2 Γ(α2)

eyi/β2yα2−1
i .

Any time we are finding the unrestricted MLE for this kind of problem, we can do it
in two steps. When we are maximizing over (α1, β1), then the material from Sample 2 is
a constant and can be ignored. And when we are maximizing over (α2, β2), the material
from Sample 1 is a constant. Then,

−2 log �(θ̂) = −2 log[�1(θ̂1)�2(θ̂2)] = [−2 log �1(θ̂1)] + [−2 log �2(θ̂2)].

Thus, to obtain -2 time the overall log likelihood evaluated at the MLE, we can do the
minimization of -2 times the log likelihood separately for each sample, and then add the
minimum values.

For the restricted MLE, we have a 3-parameter problem, and we need to minimize the
following expression over (α, β1, β2):

−2 log �(α, β1, β2) = 2α(n1 log β1 + n2 log β2)

+ 2(n1 + n2) log Γ(α)

+
2

β1

n1∑
i=1

xi +
2

β2

n2∑
j=1

yj

− 2(α − 1)(
n1∑
i=1

log xi +
n2∑
j=1

log yj).

Now we’ll calculate G and the p-value for a data set. The data come in two columns;
the first column indicates group membership, and the second column contains the values
of the gamma random variables. Here is the R program gammatest.R.
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#######################################################################

# gammatest.R Two independent Gamma samples. Test H0: alpha1=alpha2 #

# Execute with source("gammatest.R") #

#######################################################################

#

# Define functions

#

GamLL <- function(theta,xx) # -2 Log likelihood for a simgle Gamma distribution

# Data are in xx

{

alpha <- theta[1] ; beta <- theta[2]

n <- length(xx) ; sumx <- sum(xx) ; sumlogx <- sum(log(xx))

GamLL <- 2*n*alpha*log(beta) + 2*n*lgamma(alpha) + 2*sumx/beta -

2*(alpha-1)*sumlogx

# Fix up to avoid negative alpha, beta

# The nlm function will replace Inf with the largest machine value

if(alpha <= 0) GamLL <- Inf ; if(beta <= 0) GamLL <- Inf

GamLL

} # end of function GamLL

alphaeq <- function(theta,xx,yy) # Restricted MLE for two independent Gamma

# samples. H0: alpha1=alpha2

{

alpha <- theta[1] ; beta1 <- theta[2] ; beta2 <- theta[3]

n1 <- length(xx) ; n2 <- length(yy)

sumx <- sum(xx) ; sumy <- sum(yy)

sumlogx <- sum(log(xx)) ; sumlogy <- sum(log(yy))

alphaeq <- 2*alpha*(n1*log(beta1)+n2*log(beta2)) +

2*(n1+n2)*lgamma(alpha) +

(2/beta1)*sumx + (2/beta2)*sumy -

2*(alpha-1)*(sumlogx+sumlogy)

# Fix up to avoid negative alpha, betas

# The nlm function will replace Inf with the largest machine value

if(alpha <= 0) alphaeq <- Inf

if(beta1 <= 0) alphaeq <- Inf ; if(beta2 <= 0) alphaeq <- Inf

alphaeq

} # End of function alphaeq

#

# Read the data

#

datta <- read.table("gammatest.dat")

datta[1:10,] # Look at first 10 rows

datta[120:125,] # Last 6 rows

x <- datta[,2][datta[,1]==1] # x gets numbers in the second column such

# that the number in the first column equals one.

y <- datta[,2][datta[,1]==2]

#
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# Compute and print MLEs

#

# First, unrestricted. Get starting values with method of moments

#

xbar <- mean(x) ; s2 <- var(x)

astart <- xbar^2/s2 ; bstart <- s2/xbar

samp1 <- nlm(GamLL,c(astart,bstart),xx=x)[1:2]

# First element is minimum value

# Second element is pair (alphahat,betahat)

xbar <- mean(y) ; s2 <- var(y)

astart <- xbar^2/s2 ; bstart <- s2/xbar

samp2 <- nlm(GamLL,c(astart,bstart),xx=y)[1:2]

alphahat1 <- samp1$estimate[1] ; betahat1 <- samp1$estimate[2]

alphahat2 <- samp2$estimate[1] ; betahat2 <- samp2$estimate[2]

unrest <- samp1$minimum + samp2$minimum # -2LL at unrestricted MLE

#

# Now restricted. Use crude modification of the unrestricted MLEs

# as starting values.

#

astart <- (samp1$estimate[1]+samp2$estimate[1])/2 # Mean of unrestricted MLEs

b1start <- samp1$estimate[2] ; b2start <- samp1$estimate[2]

together <- nlm(alphaeq,c(astart,b1start,b2start),xx=x,yy=y)[1:2]

alphahathat <- together$estimate[1] ; betahathat1 <- together$estimate[2]

betahathat2 <- together$estimate[3]

rest <- together$minimum # -2LL at restricted MLE

#

cat("\n")

cat("Unrestricted MLE: \n")

cat(" alphahat1 = ",alphahat1," betahat1 = ",betahat1,"\n")

cat(" alphahat2 = ",alphahat2," betahat2 = ",betahat2,"\n")

cat(" -2LL at this parameter value = ",unrest,"\n")

cat("\n")

cat("\n")

cat("Restricted MLE: \n")

cat(" alphahathat = ",alphahathat,"\n")

cat(" betahathat1 = ",betahathat1," betahathat2 = ",betahathat2,"\n")

cat(" -2LL at this parameter value = ",rest,"\n")

cat("\n")

cat("\n")

# Test statistic & p-value

G <- rest-unrest ; p <- 1-pchisq(G,1)

cat("G = ",G," p = ",p,"\n")

cat("\n")

cat("\n")

################# End of program gammatest.R ####################

Here is the output.
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> source("gammatest.R")

Unrestricted MLE:

alphahat1 = 1.204890 betahat1 = 2.693892

alphahat2 = 1.631417 betahat2 = 3.544673

-2LL at this parameter value = 620.5435

Restricted MLE:

alphahathat = 1.426550

betahathat1 = 2.27531 betahathat2 = 4.053725

-2LL at this parameter value = 622.253

G = 1.709518 p = 0.1910479

Warning messages:

1: NA/Inf replaced by maximum positive value

2: NaNs produced in: log(x)

3: NA/Inf replaced by maximum positive value

Just for reference, this example had n1 = 50, n2 = 75, and true parameter values α1 = 1,
α2 = 1.5, β1 = 3, and β2 = 4. The null hypothesis was not rejected at the α = 0.05 level.
The results were not statistically significant. All we can say is that these data do not
provide sufficient evidence to conclude that α1 is different from α2. Our analysis has led
to a Type II error, but that’s life. The difference between α1 and α2 was too small for us
to have a good chance of detecting it with these sample sizes. With bigger sample sizes,
the power (probability of rejecting H0) would have been higher.

5


