STA 313F04 Formulas

Here are some useful formulas. You may use any them without proof, unless you are explicitly asked to derive it. You will not need them all.

- If **A** is $n \times r$ and **B** is $r \times m$, then $\mathbf{AB} = \left[\sum_{i=1}^{r} a_{ik} b_{kj}\right]$.
- $E(\mathbf{AXB}) = \mathbf{A}E(\mathbf{X})\mathbf{B}$
- $V(\mathbf{X}) = E\left((\mathbf{X} \boldsymbol{\mu}_x)(\mathbf{X} \boldsymbol{\mu}_x)'\right)$
- $C(\mathbf{X}, \mathbf{Y}) = E\left((\mathbf{X} \boldsymbol{\mu}_x)(\mathbf{Y} \boldsymbol{\mu}_y)'\right)$
- The multivariate normal density is $f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}}(2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right].$
- If $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and \mathbf{A} is a matrix of constants, $\mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$.
- For the multivariate normal, $\hat{\mu} = \overline{\mathbf{x}}$ and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \overline{\mathbf{x}}) (\mathbf{x}_i \overline{\mathbf{x}})'$
- For the multivariate normal, $-2\log L(\hat{\mu}, \hat{\Sigma}) = n\log |\hat{\Sigma}| + np[1 + \log(2\pi)].$

The EQS model is

$$\boldsymbol{\eta} = \boldsymbol{\beta}\boldsymbol{\eta} + \boldsymbol{\gamma}\boldsymbol{\xi},$$

where $\boldsymbol{\eta}$ is a vector of endogenous variables, $\boldsymbol{\xi}$ is a $N(\mathbf{0}, \boldsymbol{\Phi})$ vector of exogenous variables, and $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ are matrices of constants, with $(\mathbf{I} - \boldsymbol{\beta})$ non-singular.

The LISREL model is

$$egin{array}{rcl} \eta &=& eta\eta+\Gammam{\xi}+m{\zeta}\ {
m y}\ &=& \Delta_y\eta+\epsilon\ {
m x}\ &=& \Delta_xm{\xi}+\delta \end{array}$$

where

 η is a vector of latent endogenous variables.

 $\boldsymbol{\xi}$ is a vector of latent exogenous variables.

x is a vector of manifest indicators for $\boldsymbol{\xi}$.

y: is a vector of manifest indicators for $\boldsymbol{\eta}$.

 ζ , ϵ and δ are vectors of error terms, independent of each other and of ξ .

All random vectors have expected value zero.

$$V(\boldsymbol{\xi}) = \boldsymbol{\Phi}, V(\boldsymbol{\zeta}) = \boldsymbol{\Psi}, V(\boldsymbol{\epsilon}) = \boldsymbol{\Theta}_{\boldsymbol{\epsilon}}, V(\boldsymbol{\delta}) = \boldsymbol{\Theta}_{\boldsymbol{\delta}}.$$

 β , Γ , Δ_y and Δ_x are matrices of constants, with the diagonal of β zero.