STA 313F2004 Assignment 6

The problems in this assignment are about model identification. In the classical structural equation models, where the variables are multivariate normal with expected value zero, a model is identified if and only if it is possible to solve uniquely for the set of model parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$ in terms of the unique elements $\sigma_{i, j}$ of the variance-covariance matrix $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}(\boldsymbol{\theta})$ of the manifest variables. That is, the function $\boldsymbol{\Sigma}(\boldsymbol{\theta})$ is a one-to-one function.

In practice, this means that you are dealing with a system of $\frac{p(p+1)}{2}$ equations in k unknowns, where there are p manifest variables and k parameters in the model. You are trying to either show that the model is identified, or that it is not identified.

- To prove that a model is identified, the technique you have available now is to explicitly solve for the θ values in terms of the $\sigma_{i, j}$ values. If you obtain a unique solution, you have proved that the model is identified.
- To prove that a model is not identified, there are two main techniques.
- If at any point in the process, you find you have more unknowns than equations, a unique solution is impossible, and you are done. In particular, always compare k and $\frac{p(p+1)}{2}$ before doing anything else. Of course, $\frac{p(p+1)}{2} \geq k$ is just a necessary condition for identification; it's not sufficient.
- To prove that a model not identified, it is enough to produce two distinct values of $\boldsymbol{\theta}$ that yield the same $\boldsymbol{\Sigma}$. A simple numerical example is best.

Do this assignment in preparation for the quiz, which may be on Friday, Nov. 26th, or possibly Monday Nov. 29th. The problems are not to be handed in; do them in preparation for the quiz.

1. Consider the model $y=b_{1} x_{1}+b_{2} x_{2}+e$, where $x_{1} \sim N\left(0, \sigma_{1}^{2}\right), x_{2} \sim N\left(0, \sigma_{2}^{2}\right)$, $\operatorname{Cov}\left(x_{1}, x_{2}\right)=\sigma_{12}, e \sim N\left(0, \sigma_{e}^{2}\right)$, and e is independent of x_{1} and x_{2}. Is this model identified? Prove your answer.
2. Consider this model:

$$
\begin{aligned}
x_{1} & =F_{1}+e_{1} \\
x_{2} & =F_{2}+e_{2} \\
y & =b_{1} F_{1}+b_{2} F_{2}+e_{3}
\end{aligned}
$$

where the variables are multivariate normal with expectation zero, F_{1} and F_{2} are correlated with each other but independent of e_{1}, e_{2} and e_{3}, and the error terms e_{1}, e_{2} and e_{3} are independent of each other. Is this model identified? Prove your answer.
3. Is the following model identified? Prove your answer.

4. Is this model identified? Prove your answer.

5. Consider this model:

$$
\begin{aligned}
& y_{1}=b_{1} x_{1}+b_{2} x_{2}+e_{1} \\
& y_{2}=b_{3} x_{2}+b_{4} x_{3}+e_{2} \\
& y_{3}=b_{5} y_{1}+b_{6} y_{2}+e_{3},
\end{aligned}
$$

where all random variables have expected value zero, the vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\prime}$ is multivariate normal, and the error terms e_{1}, e_{2} and e_{3} are normal, and independent of \mathbf{x} and of each other. As usual, the manifest variables are the x and y variables. Is the model identified? Prove your answer.
6. Consider the model $y=b_{1} x_{1}+b_{2} x_{2}+e$, where x_{1} and x_{2} are independent with $V\left(x_{1}\right)=V\left(x_{2}\right)=1, V(e)=\sigma_{e}^{2}$, and x_{1} is independent of e, but $\operatorname{Cov}\left(x_{2}, e\right)=k \neq 0$. As usual, all random variables have expected value zero. Is the model identified? Prove your answer.
7. Here is a factor analysis model in which all the manifest variables are standardized. That is, they are divided by their standard deviations as well as having the means subtracted off. This gives them man zero and variance one. This means that we work with a correlation matrix rather than a covariance matrix; that's the classical way to do factor analysis.

$$
\begin{aligned}
& y_{1}=\gamma_{1} F_{1}+e_{1} \\
& y_{2}=\gamma_{2} F_{2}+e_{2} \\
& y_{3}=\gamma_{3} F_{3}+e_{3}
\end{aligned}
$$

where F_{1}, F_{2} and F_{3} are independent $N(0,1), e_{1}, e_{2}$ and e_{3} are normal and independent with expected value zero, $V\left(y_{1}\right)=V\left(y_{2}\right)=V\left(y_{3}\right)=1$, and γ_{1}, γ_{2} and γ_{3} are nonzero constants.
(a) What is $V\left(e_{1}\right)$? $V\left(e_{2}\right)$? $V\left(e_{3}\right)$?
(b) Give the variance-covariance matrix of the manifest variables It is a correlation matrix because the variances of all the manifest variables are one. (Recall $\left.\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD(X)SD(Y)}}\right)$.
(c) What is $\operatorname{Corr}\left(F_{1}, y_{1}\right)$?
(d) Is the model identified? Prove your answer.
8. Here is another factor analysis model. This one has a single underlying factor. Again, all the manifest variables are standardized.

$$
\begin{aligned}
& y_{1}=\gamma_{1} F+e_{1} \\
& y_{2}=\gamma_{2} F+e_{2} \\
& y_{3}=\gamma_{3} F+e_{3},
\end{aligned}
$$

where $F \sim N(0,1), e_{1}, e_{2}$ and e_{3} are normal and independent of F and each other with expected value zero, $V\left(y_{1}\right)=V\left(y_{2}\right)=V\left(y_{3}\right)=1$, and γ_{1}, γ_{2} and γ_{3} are nonzero constants with $\gamma_{1}>0$. Is the model identified? Prove your answer.
9. Consider this model:

$$
\begin{aligned}
& y_{1}=b_{1} x_{1}+e_{1} \\
& y_{2}=b_{2} x_{2}+e_{2}
\end{aligned}
$$

Where all the variables have expected value zero, the independent variables x_{1} and x_{2} are independent of the error terms e_{1} and $e_{2}, \operatorname{Cov}\left(x_{1}, x_{2}\right)=c \neq 0$, and $\operatorname{Cov}\left(e_{1}, e_{2}\right)=k \neq 0$. Is the model identified? Prove your answer.

