STA 313F2004 Assignment 3

Do this assignment in preparation for the quiz on Friday, Oct. 22. The hand-written parts are practice for the quiz, and are not to be handed in. The computer part (last question) may be handed in, so bring a printout to the quiz.

1. Let \mathbf{X} and \mathbf{Y} be random matrices of the same dimensions. Show $E(\mathbf{X}+\mathbf{Y})=$ $E(\mathbf{X})+E(\mathbf{Y})$.
2. Let \mathbf{X} be a random matrix, and \mathbf{B} be a matrix of constants. Show $E(\mathbf{X B})=E(\mathbf{X}) \mathbf{B}$.
3. If the $p \times 1$ random vector \mathbf{X} has variance-covariance matrix $\boldsymbol{\Sigma}$ and \mathbf{A} is an $m \times p$ matrix of constants, prove that the variance-covariance matrix of $\mathbf{A X}$ is $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$. Start with the definition of a variance-covariance matrix.
4. If the $p \times 1$ random vector \mathbf{X} has mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, show $\boldsymbol{\Sigma}=E\left(\mathbf{X X}^{\prime}\right)-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$.
5. Let \mathbf{X} and \mathbf{Y} be random matrices such that the product $\mathbf{X Y}$ can be formed, and let all elements of \mathbf{X} be independent of the elements of \mathbf{Y}. Prove $E(\mathbf{X Y})=E(\mathbf{X}) E(\mathbf{Y})$.
6. Let \mathbf{X} be a $p \times 1$ random vector with mean $\boldsymbol{\mu}_{x}$ and variance-covariance matrix $\boldsymbol{\Sigma}_{x}$, and let \mathbf{Y} be an $r \times 1$ random vector with mean $\boldsymbol{\mu}_{y}$ and variance-covariance matrix $\boldsymbol{\Sigma}_{y}$. Define $C(\mathbf{X}, \mathbf{Y})$ by the $p \times r$ matrix $C(\mathbf{X}, \mathbf{Y})=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right)$.
(a) What is the (i, j) element of $C(\mathbf{X}, \mathbf{Y})$?
(b) Find an expression for $V(\mathbf{X}+\mathbf{Y})$ in terms of $\boldsymbol{\Sigma}_{x}, \boldsymbol{\Sigma}_{y}$ and $C(\mathbf{X}, \mathbf{Y})$. Show your work.
7. Let X_{1} be $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and X_{2} be $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$, independent of X_{1}. What is the joint distribution of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$? What is required for Y_{1} and Y_{2} to be independent?
8. Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ be multivariate normal with

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right] \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{2}+X_{3}$. Find the joint distribution of Y_{1} and Y_{2}.
9. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be independent $M V N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ random vectors, and let $\boldsymbol{\Sigma}$ be fixed and known. Derive the maximum likelihood estimate of $\boldsymbol{\mu}$. "Derive" means show all the work. Where do you use the fact that $\boldsymbol{\Sigma}^{-1}$ is positive definite? Indicate this clearly.
10. Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where \mathbf{X} is an $n \times p$ matrix of known constants, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown constants, and $\boldsymbol{\epsilon}$ is multivariate normal with mean zero and covariance matrix $\sigma^{2} \mathbf{I}_{n}$, with $\sigma^{2}>0$ an unknown constant.
(a) What is the distribution of \mathbf{Y} ?
(b) It will be assumed that the rank of \mathbf{X} is $p<n$, so the maximum likelihood estimate (MLE) of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} Y$. You may use this without proof. Given the MLE of $\boldsymbol{\beta}$, find the MLE of σ^{2}. Show your work.
(c) What is the distribution of $\hat{\boldsymbol{\beta}}$? Show the calculations.
(d) Let $\widehat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$. What is the distribution of $\widehat{\mathbf{Y}}$? Show the calculations.
(e) Let the vector of residuals $\mathbf{e}=(\mathbf{Y}-\widehat{\mathbf{Y}})$. What is the distribution of \mathbf{e} ? Show the calculations. Simplify!
11. Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be a random sample from a multivariate normal population with mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$. Using the MLEs

$$
\widehat{\boldsymbol{\mu}}=\overline{\mathbf{X}} \text { and } \widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{\prime}
$$

derive the large-sample likelihood ratio test G for testing whether the components of the random vectors \mathbf{X}_{i} are independent. That is, we want to test whether $\boldsymbol{\Sigma}$ is diagonal. If your simplification of $-2 \log$ likelihood does not use the trace of a matrix (see lecture notes) you are leaving something out. What are the degrees of freedom for this test?
12. Write an S function to compute the test you derived in the preceding question. The function should return 3 values: G, the degrees of freedom, and the p-value. Run your function on the sample in fourvars. dat; see link to the data on the course web page. Bring a printout showing the definition of your function and illustrating the run on fourvars.dat.

