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Abstract

This article shows how structural equation modelling methods may be used to
carry out a valid regression analysis when independent variables are measured with
error. An essential part of the process is to overcome the problem of model identi-
fication. A general solution, called the “double measurement design,” is described;
this involves measuring each independent variable twice. When data are collected
according to the double measurement design, model identification is guaranteed,
and the data analyst need not struggle with mathematical details.

Keywords: Errors in variables, Measurement error, Regression, Structural equa-
tion models.

Introduction

In a survey, suppose that a respondent’s annual income is “measured” by simply asking
how much he or she earned last year. Will this measurement be completely accurate?
Of course not. Some people will lie, some will forget and give a reasonable guess, and
still others will suffer from legitimate confusion about what constitutes income. Even
physical variables like height, weight and blood pressure are subject to some inexactness
of measurement, no matter how skilled the personnel conducting the measurement. In
fact, very few of the variables in the typical data set are measured completely without
error. An exception might be something like the amount of drug administered in a clinical
trial. Here, laboratory procedures guarantee that for all practical purposes, the amount
of drug a subject receives is exactly what you think it is. But in general, if a variable is
simply measured rather than being experimentally manipulated, there is usually at least
a little bit of measurement error.
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Random variables that cannot be directly observed are called latent variables. The
ones we can observe are sometimes called “manifest,” but in this paper they will be called
“observed” or “observable,” which is also a common usage. Upon reflection, it is clear that
most of the time, we are interested in relationships among latent variables, but at best
our data consist only of their imperfect, observable counterparts. One is reminded of the
allegory of the cave in Plato’s Republic, where human beings are compared to prisoners
in a cave, with their heads chained so that they can only look at a wall. Behind them is
a fire, which casts flickering shadows on the wall. They cannot observe reality directly;
all they can see are the shadows.

In ordinary least-squares regression, the only latent variable is the error term. Mea-
surement error in the dependent variable can perhaps be absorbed into the error term,
but there is no provision for measurement error in the independent variables. Unfortu-
nately, when independent variables are measured with error, the results can be disastrous.
Estimated regression coefficients are biased even as the sample size approaches infinity,
and Type I error rates can be seriously inflated.

This has been known for a long time. The alarm about biased regression coefficients
was sounded by Stouffer (1936), and by the seventh edition of Statistical methods for
research workers, Fisher (1938) was warning scientists about the problem. For a mod-
ern and readable discussion of what happens to ordinary least-squares regression when
measurement error is ignored, the classic article by Cochran (1968) is an excellent source.
Fuller (1987) provides an authoritative treatment of regression models that incorporate
measurement error; also see Cheng and Van Ness (1999). And the classical structural
equation models (for example Goldberger and Duncan, 1973; Jöreskog, 1978; McArdale,
1980; McDonald, 1978; Bentler and Weeks, 1980; Bollen, 1989) include regression with
and without measurement error as special cases.

Nevertheless, few regression texts outside Econometrics provide guidance about what
to do when the independent variables are measured with error. The present article at-
tempts to fill this gap. It uses language and notation associated with the LISREL struc-
tural equation model (Jöreskog, 1978; Bollen, 1989) rather than the arguably more sophis-
ticated approach of Fuller (1987), in order to be accessible to advanced undergraduates
in Statistics. Another advantage of the structural equation modelling approach is that
high-quality commercial software is available. SAS proc calis (SAS Institute, 1999) is
available in many academic environments, and LISREL (Jöreskog and Sörbom, 1996) and
AMOS (Arbuckle, 2006) are excellent programs with free student versions. There is also
a structural equation modelling package for R (Fox, 2006).

Here is the plan of the paper. Section 1 presents almost the simplest possible regression
model with measurement error. There is one independent variable, no intercept, additive
measurement error, and everything is normally distributed. We will see that even in this
case, the model parameters cannot be successfully estimated from the data. The problem
is model identification. When a statistical model is not identified, it is impossible to
recover the parameters even from an infinite amount of data.

Section 2 discusses model identification, and arrives at a well-known principle that
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applies to all structural equation models, including models of regression with measurement
error. The principle is this. The mean and covariance matrix of the observable variables
are always functions of the model parameters. If the model parameters are also functions
of the mean and covariance matrix, then those parameters are identified.

Section 3 describes a general solution of the identification problem for regression with
measurement error: the double measurement design. This consists of measuring all the
independent variables twice, preferably on two different occasions, with different measure-
ment procedures. If this can be done in such a way that the errors of measurement on the
two occasions are independent, then model identification is taken care of automatically,
and the analysis can proceed in a routine manner.

The double measurement design is similar to the idea of “tau-equivalent measures”
(for example Bollen, 1987, p. 208, or cite Lord and Novick?), except that all measurement
errors need not be independent. In fact, a very desirable feature of the double measure-
ment design is that while errors of measurement from different measurement procedures
must be independent, errors of measurement from the same measurement procedure are
allowed to be correlated. For example, one should always expect correlated measurement
errors for self-report data; these would arise from consistent individual differences in style
of responding to questionnaires and in desire to make a favorable impression. And when
measurement errors are correlated, adopting a model where they are uncorrelated can
have effects that are just as bad as ignoring measurement error altogether.

The double measurement model of Section 3 employs the classical Structural Equa-
tion Modelling trick of “centering” all the variables by subtracting off the means, and
then conducting the analysis under the assumption that all expected values are zero. In
Section 4, the model is expanded to include intercepts. But in most cases this just makes
the model parameters harder to identify, and does not providing any additional informa-
tion about the relationship between the independent and dependent variables. The final
conclusion is that most of the time, including intercepts is not worth the extra trouble.

In the development of this theory, assuming multivariate normality simplifies the ex-
position but is not really necessary. In Section 5, the normal assumption is relaxed. For
independent variables that are measured without error (for example, the dummy variables
for factors that are experimentally manipulated), the distribution does not matter at all.
For independent variables that are measured with error, the double measurement design
guarantees identification of a necessary function of the parameters of a distribution-free
model.

The double measurement design also points to estimators of the regression coefficient
that are consistent and asymptotically normal, by a straightforward application of the
Central Limit Theorem. This would provide the basis for a full set of large-sample tests
and confidence intervals, but it is unnecessary to go there. In fact, the estimators and
tests based on a multivariate normal assumption enjoy robustness properties that make
them superior to one method (the weighted least-squares approach of Browne, 1984) that
was specifically designed to avoid the assumption of normality. They are probably also
superior to the methods suggested by the double measurement design, which are very
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similar to Browne’s.
The moral of the story is comforting in its simplicity. For data that are collected

according to the double measurement recipe, just fit a classical structural model with no
intercepts and everything normally distributed; this is close to the default settings of most
available software.

1 Regression through the origin with one indepen-

dent variable

Even in the simplest case, when we try to incorporate measurement error into a regression
model, we immediately encounter a technical difficulty: model identification. In a simple
regression, suppose the dependent variable is related to an independent variable. We can
observe the dependent variable, but not the actual value of the independent variable. All
we can see is the independent variable plus a piece of random noise.

Independently for i = 1, . . . , n, let

Yi = γξi + ζi (1)

Xi = ξi + δi,

where ξi, ζi and δi and are independent normal random variables with expected value
zero, V ar(ξi) = φ, V ar(ζi) = ψ, and V ar(δi) = θδ. The regression coefficient γ is a
fixed constant. The notation here is taken from the LISREL structural equation model
(Jöreskog, 1978; Bollen, 1989) for compatibility with later parts of this paper, and because
familiarity with this notation will make it easier for students to use structural equation
modelling software.

Data from Model (1) are just the pairs (Xi, Yi) for i = 1, . . . , n. The true independent
variable ξi is a latent variable whose value cannot be known exactly. The model implies
that the (Xi, Yi) are independent bivariate normal with mean zero and covariance matrix

Σ =

[
φ+ θδ γφ
γφ γ2φ+ ψ

]
. (2)

A multivariate normal distribution with mean zero is completely characterized by its
covariance matrix, so even an infinite amount of data can only tell us the three unique
values in the matrix Σ. But there are four parameters in the model: γ, φ, ψ and θδ.
Recovering all four parameters from the unique elements of Σ amounts to solving three
equations in four unknowns — an impossibility. Maximum likelihood estimation will
fail, with a non-unique maximum at an infinite number of points along a curve in four
dimensions.

The problem is that Model (1) is not uniquely identified in the model parameters. The
concept of model identification is unfamiliar to most students, because typically (except
in the case of exploratory factor analysis) we present them with statistical models that
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are nicely identified, and the issue does not arise. Thus, a general discussion of model
identification may be helpful.

2 Model identification

Suppose we have a vector of observable data D = (D1, . . . , Dn), and a statistical model
(a set of assertions implying a probability distribution) for D. The model depends on a
parameter θ, which is usually a vector. If the probability distribution of D corresponds
uniquely to θ, then we say that the model is identified. But if any two different parameter
values yield the same probability distribution, then the model is not identified. In this
case, the data cannot be used to decide between the two parameter values, and standard
methods of parameter estimation will fail.

In Model (1), θ = (γ, φ, ψ, θδ), Di = (Xi, Yi), and the probability distribution of
D is completely determined by Σ. The two variances and one covariance in Σ cannot
correspond uniquely to the four elements of θ, so the model is not identified. To really
nail it down, the two distinct parameter values θ1 = (2, 4, 9, 1) and θ2 = (2, 8

3
, 1, 7

3
) both

yield

Σ =

[
5 8
8 25

]
.

The clearest way to prove a model is non-identified is with a simple numerical example
like this, but frequently other arguments are more convenient.

When a model is not identified, consistent estimation for all the points in the param-
eter space is an impossibility. Recall that an estimator is said to be consistent if, for
any arbitrarily small neighborhood of the true parameter value, the probability of the
estimator being in that neighborhood approaches one as a limit, as the sample size tends
to infinity. Consistency is about the least one can ask of an estimator — basically that
for a large enough sample, it will probably be close to the right answer.

So, let θ̂ be an estimator of the parameter θ, and suppose the model is not identified.
Then there exist two different parameters values θ1 and θ2 that generate exactly the same
distribution of the sample data, and hence of θ̂. Take neighborhoods around θ1 and θ2

small enough so they do not overlap. Suppose that the estimator θ̂ is consistent, regardless
of whether θ equals θ1 or θ2. Since the probability distribution of θ̂ is identical for both
parameters, it must become concentrated in both the neighborhood around θ1 and the
neighborhood around θ2. This cannot be, since the neighborhoods are disjoint. Hence,
the supposition that “the estimator θ̂ is consistent, regardless of whether θ equals θ1 or
θ2” has to be wrong; this is what we wanted to show.

In practical terms, if two parameter values yield the same probability distribution of
the data, then the data cannot be used to distinguish between them. In the typical case
of a non-identified model, infinitely many parameter values yield the same distribution,
for each point in the parameter space. The parameter has a true value, but you cannot
know it, even with an infinite amount of data.
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It is possible for certain functions of the parameter vector to be identified, even when
the entire model is not. If full knowledge of the probability distribution of D implies
knowledge of some function of θ, then that function is said to be identified, and consistent
estimation of it is a possibility. For example, let D1, . . . , Dn be i.i.d. Poisson random
variables with mean λ1 + λ2, where λ1 > 0 and λ1 > 0. The parameter is the pair θ =
(λ1, λ2). The model is not identified because any pair of λ values satisfying λ1+λ2 = c will
produce exactly the same probability distribution. Notice also how maximum likelihood
estimation will fail in this case; the likelihood function will have a ridge, a non-unique
maximum along the line λ1 + λ2 = D, where D is the sample mean. The function
λ = λ1 + λ2, of course, is identified.

The Normal distribution Suppose we have a random sample X1, . . . , Xn from a nor-
mal distribution with parameters µ and σ2. Of course this model must be identified
because we use it all the time, but how can one show it? Think of the cumulative dis-
tribution function of X1 not as a formula involving µ and σ2, but as a curve, a set of
(x, y) points. If we can produce the values of µ and σ2 as functions of the curve, then the
model will be identified, because function values are unique (this is the difference between
a function and a relation). But an integral with respect to a distribution is a function of
that distribution, so when we compute E(X1) and E(X2

1 ) and then solve for µ and σ2, we
have proved identification. Identification of all the common probability models (including
the multivariate normal) follows in this way.

Back to regression with measurement error Classical structural equation models,
including models for regression with measurement error, are based on systems of simulta-
neous linear equations. Assuming simple random sampling from a large population, the
observable data are independent and identically distributed, with a mean vector µ and
a covariance matrix Σ that may be written as functions of the model parameters in a
straightforward way. If it is possible to solve uniquely for a given model parameter in
terms of the elements of µ and Σ, then that parameter is a function of µ and Σ, which in
turn are functions of the probability distribution of the data. A function of a function is
a function, and so the parameter is a function of the probability distribution of the data.
Hence, it is identified.

To summarize, we have arrived a simple way to check model identification for any linear
simultaneous equation model, not just measurement error regression. First, calculate the
expected value and covariance matrix of the observable data, as a function of the model
parameters. If it is possible to solve uniquely for the model parameters in terms of the
means, variances and covariances of the observable data, then the model parameters are
identified. If all the random vectors in the model are multivariate normal, this condition
is necessary as well as sufficient.
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Example: Instrumental variables In a model like (1), suppose that we have access
to data for another two variables that depend on the latent independent variable ξ. Our
main interest is still in Y ; the other two are are called instrumental variables because
they are just tools for obtaining an identified model.

Here is the expanded version of Model (1). The original dependent variable Y is
now called Y1. Following the usual convention in structural equation modelling, the
subscript i has been omitted to reduce notational clutter. The model is presented for a
single observation, and implicitly everything is independent and identically distributed,
for i = 1, . . . , n.

Y1 = γ1ξ + ζ1 (3)

Y2 = γ2ξ + ζ2

Y3 = γ3ξ + ζ3

X = ξ + δ,

where δ, ξ, ζ1, ζ2 and ζ3 are all independent, V ar(ξ) = φ, V ar(ζ1) = ψ1, V ar(ζ2) = ψ2,
V ar(ζ3) = ψ3, V ar(δ) = θδ, all expected values are zero, and the regression coefficients
γ1, γ2 and γ3 are fixed constants.

Writing the vector of observable data (for subject i) as D = (X, Y1, Y2, Y3)
′, elements

of the covariance matrix Σ may be obtained by elementary one-variable calculations, like
V ar(X) = V ar(ξ + δ) = V ar(ξ) + V ar(δ) = φ+ θδ, and

Cov(X, Y1) = E(X, Y1) = E([ξ + δ][γ1ξ + ζ1]) = E(γ1ξ
2 + ξζ1 + γ1δξ + δζ1)

= γ1E(ξ2) + E(ξζ1) + γ1E(δξ) + E(δζ1))

= γ1V ar(ξ) + E(ξ)E(ζ1) + γ1E(δ)E(ξ) + E(δ)E(ζ1)

= γ1φ

In this way, we obtain

Σ =


φ+ θδ γ1φ γ2φ γ3φ

γ2
1φ+ ψ1 γ1γ2φ γ1γ3φ

γ2
2φ+ ψ2 γ2γ3φ

γ2
3φ+ ψ3

 . (4)

To prove model identification, we need to solve for the model parameters in terms of
Σ. Denote the i, j element of Σ by σij. The task is to solve the following ten equations
in eight unknowns

σ11 = φ+ θδ (5)

σ12 = γ1φ

σ13 = γ2φ

σ14 = γ3φ
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σ22 = γ2
1φ+ ψ1

σ23 = γ1γ2φ

σ24 = γ1γ3φ

σ33 = γ2
2φ+ ψ2

σ34 = γ2γ3φ

σ44 = γ2
3φ+ ψ3

for φ, θδ, γ1, γ2, γ3, ψ1, ψ2, and ψ3.
The fact that there are more equations than unknowns does not guarantee the existence

of a unique solution; it merely tells us that a unique solution is possible. Suppose that
γ2 and γ3 are both non-zero. This is reasonable, because to be useful, the instrumental
dependent variables must have some relationship to the independent variable. In this
case,

σ13σ14

σ34

=
γ2γ3φ

2

γ2γ3φ
= φ. (6)

Then, simple substitutions allow us to solve for the rest of the parameters, yielding the
complete solution

φ =
σ13σ14

σ34

(7)

θδ = σ11 −
σ13σ14

σ34

γ1 =
σ12σ34

σ13σ14

γ2 =
σ34

σ14

γ3 =
σ34

σ13

ψ1 = σ22 −
σ2

12σ34

σ13σ14

ψ2 = σ33 −
σ13σ34

σ14

ψ3 = σ44 −
σ14σ34

σ13

This proves model identification. The solution is thorough but somewhat tedious,
even for this simple example. The student may wonder how much work really needs to
be shown. I would suggest showing the calculations leading to the covariance matrix (4),
saying “Denote the i, j element of Σ by σij,” skipping the system of equations (5) because
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they are present in (4), and showing the solution for φ in (6), including the stipulation that
γ2 and γ3 are both non-zero. Then, instead of the explicit solution (7), write something
like

θδ = σ11 − φ (8)

γ1 =
σ12

φ

γ2 =
σ13

φ

γ3 =
σ14

φ

ψ1 = σ22 − γ2
1φ

ψ2 = σ33 − γ2
2φ

ψ3 = σ44 − γ2
3φ

Notice how once I have solved for a model parameter, I use it to solve for other parameters
without explicitly substituting in terms of σij. The objective is to prove that a unique
solution exists by showing how to get it. An exact statement of the solution is not
necessary.

Two additional comments are in order. First, this model had no intercepts, and the
random variables all had expected value zero. This is typical of the classical structural
equation models, in which inference is based solely on the sample covariance matrix and
not the means. One speaks of “centering” all the variables by subtracting off the sample
means (for example Bollen, 1989). For large samples, this is almost the same as sub-
tracting off the population means. Since all the confidence intervals and tests are based
on large-sample theory anyway, no harm is done. Later, we shall consider models with
intercepts.

A second comment is that even for the most complex models, proving model identifi-
cation as in the preceding example involves only elementary mathematics. But it can be
long and messy, especially for models with lots of independent variables — and almost all
real-life regressions have lots of independent variables. Furthermore, for a given data set,
it is not always possible to come up with a realistic model that is identified. A sensible
alternative is to plan the statistical analysis in advance, and to ensure model identification
by collecting the right kind of data. The next section describes a way to do this. The
key is to measure the independent variables twice, preferably using different methods or
measuring instruments.

3 The double measurement design

For regression with measurement error, the model identification problem is solved if we
measure all the independent variables on more than one occasion, in such a way that
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errors of measurement on different occasions are independent. We begin with a classical
structural equation model in which all random variables have expected value zero and
there no intercepts. In Section 4, the model is extended to include intercepts and non-
zero expected values, but ultimately Model (9) below is recommended for most purposes.

For each of n independent observations, assume the following simultaneous equation
model. Implicitly, all the random quantities involved have a subscript i, i = 1, . . . , n.

X1 = ξ + δ1 (9)

X2 = ξ + δ2,

Y = Γξ + ζ

where

Y is an m × 1 random vector of observable dependent variables, so the regression
can be multivariate.

Γ is an m × p matrix of unknown constants. These are the regression coefficients,
with one row for each dependent variable and one column for each independent
variable.

ξ is a p× 1 random vector of latent independent variables, with expected value zero
and variance-covariance matrix Φ, an m×m symmetric and positive definite matrix
of unknown constants.

ζ is the error term of the latent regression. It is an m × 1 random vector with
expected value zero and variance-covariance matrix Ψ, an m × m symmetric and
positive definite matrix of unknown constants.

X1 and X2 are p×1 observable random vectors, each representing ξ plus a different
piece of random error.

δ1 is the measurement error in X1. It is a p × 1 random vector of error terms,
with expected value zero and variance-covariance matrix Θ1, a p×p symmetric and
positive definite matrix of unknown constants.

δ2 is the measurement error in X2. It is a p × 1 random vector of error terms,
with expected value zero and variance-covariance matrix Θ2, a p×p symmetric and
positive definite matrix of unknown constants.

ξ, ζ, δ1 and δ2 are all independent.

Notice that in this model, measurement errors in the independent variables can be
correlated in one sense, but not in another. Because the variance-covariance matrices of
the error terms (Θ1 and Θ2) need not be diagonal, the model allows, for example, farmers
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who overestimate their number of pigs to also overestimate their number of cows. On the
other hand, if one thinks of X1 and X2 as measurements of the independent variables by
two different methods, then the errors of measurement by different methods must not be
correlated. For example, if the number of pigs were counted once by the farm manager at
feeding time (an element of X1) and on another occasion by a research assistant from an
areal photograph (the corresponding element of X2), then the requirement of uncorrelated
measurement errors would surely be satisfied.

To emphasize an important practical point, the matrices Θ1 and Θ2 must be of the
same size, but none of their corresponding elements need be equal. This means that if
measurements of the independent variables are obtained by two different methods, the
methods need not be equally precise.

Proof of model identification The following proof illustrates how model identification
is established for structural equation models in general. Collecting X1, X2 and Y into a
single long data vector D, we write its variance-covariance matrix as a partitioned matrix:

Σ =

 Σ11 Σ12 Σ13

Σ′
12 Σ22 Σ23

Σ′
13 Σ′

23 Σ33

 , (10)

where the covariance matrix of X1 is Σ11, the covariance matrix of X2 is Σ22, the matrix
of covariances between X1 and Y is Σ13, and so on.

The parameters of the model consist of the non-redundant elements of the matrices
Γ, Φ, Ψ, Θ1 and Θ2. Assuming multivariate normality, the probability distribution
of the observable random variables corresponds uniquely to Σ. Thus, to prove model
identification, we need to show we can express the model parameters in terms of the Σij

quantities. First, we use Model (9) to write the Σij matrices in terms of the parameter
matrices.

Σ11 = Φ + Θ1 (11)

Σ12 = Φ

Σ13 = ΦΓ′

Σ22 = Φ + Θ2

Σ23 = ΦΓ′

Σ33 = ΓΦΓ′ + Ψ

This system of matrix equations is readily solved for the parameter matrices to yield

Φ = Σ12 (12)

Θ1 = Σ11 −Σ12

Θ2 = Σ22 −Σ12
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Γ = Σ′
13Σ

−1
12 = Σ′

23Σ
−1
12

Ψ = Σ33 −Σ′
13Σ

−1
12 Σ13.

This shows that Model (9) is identified, so that if data are collected following the
test-retest recipe, then the data analyst may proceed without giving further thought to
model identification.

4 Intercepts

We now expand Model (9) to include intercepts and non-zero expected values. However,
we will see that this leads to complications that are seldom worth the trouble, and the
classical models with zero expected value and no intercepts are usually preferable. Let

Y = α + Γξ + ζ (13)

X1 = ν1 + ξ + δ1

X2 = ν2 + ξ + δ2,

where α, ν1 and ν2 are vectors of constants, and E(ξ) = κ. Everything else is as in
Model (9).

Again, the observable data X1, X2 and Y are collected into a data vector D, with
expected value µ and covariance matrix Σ. The pair (µ, Σ) is a function of the probability
distribution of D. If the parameter matrices of Model (13) are functions of µ and Σ, then
they are also functions of the distribution of D, and they will be identified.

Since the addition of constants has no effect on variances or covariances, the contents
of Σ are given by (10) and (11), as before. The expected value µ is the partitioned vector

µ =

 µ1

µ2

µ3

 =

 E(X1)
E(X2)
E(Y)

 =

 ν1 + κ
ν2 + κ
α + Γκ

 . (14)

To demonstrate the identification of Model (13), one would need to solve the equations
in (14) uniquely for ν1, ν2, κ and α. Even with Γ considered known and fixed because
it is identified in (12), this is impossible, because there are still more unknowns than
equations.

If either ν1 or ν2 can be assumed zero (or if κ = 0) then the system can be solved
uniquely and the model is identified, but we doubt that such an assumption could be
justified very often in practice. Most of the time, all we can do is identify the parameter
matrices that appear in the covariance matrix, and also the functions µ1, µ2 and µ3 of
the parameter vector. This can be viewed as a re-parameterization of the model.

It is instructive to see how this works in the multivariate normal case, where the
parameters would be estimated by maximum likelihood. For i = 1, . . . , n, we collect the
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observed data xi,1, xi,2 and yi into a vector di, of length m+ 2p. We then write -2 times
the log likelihood as a function of µ and Σ. Simplifying, we obtain

−2 logL(µ,Σ) = n[ (m+ 2p)(log |Σ|+ log 2π) + tr(Σ−1Σ̂) (15)

+ (d− µ)′Σ−1(d− µ) ].

The goal, of course, is to minimize (15) over all the parameters making up µ and Σ.
Now for any value of Σ (so long as it is non-singular), the quadratic form in the second
line of (15) is zero and the entire function is minimized when µ equals d. This means
that “centering the data” by subtracting off sample means and then pretending that all
variables have expected value zero is equivalent to starting with a model like (13) that
contains intercepts, re-parameterizing the components of µ in (14) as µ1, µ2 and µ3, and
then estimating those functions by the corresponding sample means (yielding the MLE
of µ).

Notice that this minimization works for any value of the matrix of regression slopes Γ,
so that the even though Γ appears in the expression for µ, its MLE is determined entirely
by the first line of (15). In this sense, the mean vector contains no information about
the relationships between independent and dependent variables. We believe that except
in special circumstances, this makes it reasonable to employ the classical no-intercept
structural equation models to do regression with latent variables.

5 Normality

The discussion of model identification mentions multivariate normality, but this is not
necessary. Suppose that the no-intercept Model (9) holds, and that the distributions of
of the latent independent variables and error terms are unknown, except for possessing
covariance matrices. In this case the parameter of the model could be expressed as θ = (Γ,
Φ, Ψ, Θ1, ξ2, FΦ, Fζ, Fδ1 , Fδ2), where Fξ, Fζ, Fδ1 and Fδ2 are the (joint) cumulative
distribution functions of ξ, ζ, δ1 and δ2 respectively.

Note that the parameter in this “non-parametric” problem is of infinite dimension,
but this presents no conceptual difficulty. The probability distribution of the observed
data is still a function of the parameter, and to show model identification, we would have
to be able to recover the parameter from the probability distribution of the data. While
in general we cannot recover the entire parameter vector, we certainly can recover a useful
function of it, namely Γ. In fact, Γ is the only quantity of interest; the remainder of the
parameter vector consists only of nuisance parameters, whether the model is normal or
not.

Again using Σ to denote the covariance matrix of the observed data, we see that
Σ is a function of the probability distribution of the observed data. The calculations
leading to (12) still hold, showing that Γ is a function of Σ, and hence of the probability
distribution of the data. This means that Γ is identified.
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This is all very well, but can we actually do anything without knowing what the
distributions are? Certainly! For example, a reasonable though non-standard estimator
is

Γ̂ =
1

2
(Σ̂

′
13Σ̂

−1

12 + Σ̂
′
23Σ̂

−1

12 ), (16)

where Σ̂ is the sample variance-covariance matrix. Consistency follows from the Law of
Large Numbers and a continuity argument. All this assumes the existence only of second
moments and cross-moments. With the assumption of fourth moments, the multivariate
Central Limit Theorem would provide a routine basis for large-sample interval estimation
and testing.

However, there is no need to bother. Research on the robustness of the normal model
for structural equation model (Amemiya, Fuller and Pantula, 1987; Anderson and Rubin,
1956; Anderson and Amemiya, 1988; Anderson, 1989; Anderson and Amemiya, 1990;
Browne, 1988; Browne and Shapiro, 1988; Satorra and Bentler, 1990) shows that proce-
dures for (such as likelihood ratio and Wald tests) based on a multivariate normal model
are asymptotically valid even when the normal assumption is false. And Satorra and
Bentler (1990) describe Monte Carlo work suggesting that normal-theory methods gener-
ally perform better than at least one method (Browne, 1984) that is specifically designed
to be distribution-free. Since the methods suggested by the estimator (16) are similar
to Browne’s weighted least squares approach, they are also likely to be inferior to the
standard normal-theory tools.

It is important to note that while the normal-theory tests and confidence intervals
for Γ can be trusted when the data are not normal, this does not extend to the other
model parameters. For example, if the vector of latent variables ξ is not normal, then
normal-theory inference about its covariance matrix will be flawed.

In any event, the method of choice is maximum likelihood, with interpretive focus on
the regression coefficients in Γ rather than on the other model parameters.

6 Discussion

In general, data collection should be planned with the statistical analysis in mind. In
keeping with this idea, the double measurement design is both a statistical model –
specifically, Model (9) – and a set of guidelines for data collection. It assumes that
measurement error is present, and that when data are collected by a common method
or in a common setting, the errors of measurement will naturally be correlated with one
another. It also assumes that each independent variable can be measured more than
once, ideally on different occasions and in ways that are different enough so that errors
of measurement are independent between occasions.

A great deal of effort can be saved by following this recipe. The data are tailored to
satisfy the technical requirements of the model, while the model allows for the inevitable
correlations among measurement errors within occasions and is automatically identified,
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allowing clear conclusions to be drawn from the data. The only remaining issue is choosing
good software and making sure that one knows what it is actually doing.

Unfortunately, most observational data sets are assembled without any awareness of
measurement error as a statistical issue. Variables tend to be measured in only one
way, and often at more or less the same time by the same personnel. Only after the
data are collected do the investigators possibly start to think about fitting a model with
measurement error. Many times, it is only at this point that a statistician enters the
picture.

This is a difficult situation, but not necessarily hopeless. The most plausible model
that includes measurement error is unlikely to be identified, but the instrumental variables
example of Section 2 tells us that model identification can sometimes be purchased by
adding more dependent variables. (Watch out, though! Dependent variables are usually
measured with error too, and one needs specific reason to believe that those measurement
errors are unrelated to measurement errors in the independent variables.) Sometimes, a
model can be simplified or constrained, perhaps by assuming that certain covariances are
zero, and the simplified model will be identified and still fairly realistic.

Fixing up a non-identified model after the data are already collected requires the
quantitative sophistication to check model identification (repeatedly), and the subject-
matter sophistication to tell whether the model is still scientifically meaningful when a
given technical constraint is imposed. Either one person has to know a lot, or statistician
and scientist must work closely together for an extended period, without any guarantee
of ultimate success. It’s a lot easier to plan the study properly in the first place.

One final comment is that from the statistician’s viewpoint, a non-identified model
is a “bad” model because it does not allow us to find out about the model parameters,
and will probably generate a pile of warnings and error messages if we try to run the
software anyway. But it’s not the model’s fault! Think of the very first example, the
simple regression through the origin of Model (1). A model like this could be reasonable
and even approximately correct, but the data we have will not allow us to estimate the
parameters.

Now consider what happens when a fairly complicated initial model turns out not
to be identified. The typical approach is to start imposing constraints that will make it
identified. But this makes the model better only in a formal, statistical sense. Actually,
the initial model was probably the most natural and believable one, and what we are
doing is to chop pieces off for purely technical reasons. The best we can hope is that this
does not cripple the model too much.

It’s not the model’s fault; it’s the data’s fault. Or, to put it delicately, there is an
opportunity here for scientists to make their research even better by collecting data that
allow reasonable models to be estimated.
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