STA 312F2007 Solutions to Quiz 9

1. (a)

$$Cov(X, Y_5) = E(XY_5)$$

= $E[(\xi + \delta)(\gamma_5\xi + \zeta_5)]$
= $E(\gamma_5\xi^2 + \xi\zeta_5 + \gamma_5\delta\xi + \delta\zeta_5)$
= $\gamma_5E(\xi^2) + E(\xi\zeta_5) + \gamma_5E(\delta\xi) + E(\delta\zeta_5)$
= $\gamma_5Var(\xi) + E(\xi)E(\zeta_5) + \gamma_5E(\delta)E(\xi) + E(\delta)E(\zeta_5)$
= $\gamma_5\phi$

(b)

$$\begin{array}{rcl} \gamma_5 & = & \frac{\sigma_{16}}{\phi} \\ \psi_5 & = & \sigma_{66} - \gamma_5^2 \phi \end{array}$$

The objective is to prove that a unique solution exists by showing how to get it. An exact statement of the solution is not necessary.

2. $\begin{array}{l} H_0: \gamma_1 = 0 \\ H_a: \gamma_1 \neq 0 \end{array}$

Test statistic, $z^* = -7.4615$

Decision rule: reject H_0 if $|z^*| > 1.96$

Since $|z^*| > 1.96$, we reject H_0 .

Fitted equation: birthrat = -0.2329*Fgnp We conclude that in richer countries, the birth rate is lower.