## STA 312F07 Quiz 6

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ be a random sample from a multivariate normal population with mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$. Recall that the MLEs are

$$
\widehat{\boldsymbol{\mu}}=\overline{\mathbf{X}} \text { and } \widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{\prime}
$$

Show that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)=\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\Sigma}}\right)
$$

## Total Marks $=10$ Points

