STA 312F07 Quiz 3

1. (5 points) If the $p \times 1$ random vector **X** has variance-covariance matrix **\Sigma** and **A** is an $m \times p$ matrix of constants, prove that the variance-covariance matrix of **AX** is **A\SigmaA**'. Start with the definition of a variance-covariance matrix:

$$V(\mathbf{Z}) = E\left((\mathbf{Z} - \boldsymbol{\mu}_z)(\mathbf{Z} - \boldsymbol{\mu}_z)'\right).$$

2. (5 points) Let **X** be a $p \times 1$ random vector with mean $\boldsymbol{\mu}_x$, and let **Y** be an $r \times 1$ random vector with mean $\boldsymbol{\mu}_y$. Defining $C(\mathbf{X}, \mathbf{Y})$ by the $p \times r$ matrix $C(\mathbf{X}, \mathbf{Y}) = E\left((\mathbf{X} - \boldsymbol{\mu}_x)(\mathbf{Y} - \boldsymbol{\mu}_y)'\right)$ Show $C(\mathbf{X}, \mathbf{Y}) = E(\mathbf{X}\mathbf{Y}') - \boldsymbol{\mu}_x \boldsymbol{\mu}'_y$.

Total Marks = 10 Points