STA 312F07 Quiz 3

1. (5 points) If the $p \times 1$ random vector \mathbf{X} has variance-covariance matrix $\boldsymbol{\Sigma}$ and \mathbf{A} is an $m \times p$ matrix of constants, prove that the variance-covariance matrix of $\mathbf{A X}$ is $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$. Start with the definition of a variance-covariance matrix:

$$
V(\mathbf{Z})=E\left(\left(\mathbf{Z}-\boldsymbol{\mu}_{z}\right)\left(\mathbf{Z}-\boldsymbol{\mu}_{z}\right)^{\prime}\right) .
$$

2. (5 points) Let \mathbf{X} be a $p \times 1$ random vector with mean $\boldsymbol{\mu}_{x}$, and let \mathbf{Y} be an $r \times 1$ random vector with mean $\boldsymbol{\mu}_{y}$. Defining $C(\mathbf{X}, \mathbf{Y})$ by the $p \times r$ matrix $C(\mathbf{X}, \mathbf{Y})=$ $E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right)$ Show $C(\mathbf{X}, \mathbf{Y})=E\left(\mathbf{X} \mathbf{Y}^{\prime}\right)-\boldsymbol{\mu}_{x} \boldsymbol{\mu}_{y}^{\prime}$.

Total Marks $=10$ Points

