STA 312F07 Quiz 11

1. Consider the confirmatory factor analysis model

$$
\begin{aligned}
& X_{1}=F_{1}+e_{1} \\
& X_{2}=\lambda_{2} F_{1}+e_{2} \\
& X_{3}=\lambda_{3} F_{1}+e_{3} \\
& X_{4}=F_{2}+e_{4} \\
& X_{5}=\lambda_{5} F_{2}+e_{5} \\
& X_{6}=\lambda_{6} F_{2}+e_{6},
\end{aligned}
$$

where e_{1}, \ldots, e_{6} are independent of one another and of F_{1} and F_{2}, all expected values are zero, $V\left(e_{i}\right)=\psi_{i}$ for $i=1, \ldots, 6$,

$$
V\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{12} & \phi_{22}
\end{array}\right],
$$

and $\lambda_{2}, \lambda_{3}, \lambda_{5}$ and λ_{6} are nonzero constants.
(a) Give the covariance matrix of the observable variables. Show your work.
(b) Is this model identified? Answer Yes or No and prove your answer.
2. What do you think would happen if we added a third factor to the model of Question 1? Would it be identified? You don't have to do any calculations; just think about it and see the pattern.

