STA 312F07 Formulas

Here are some useful formulas. You may use any them without proof, unless you are explicitly asked to derive it. You will not need them all.

- If \mathbf{A} is $n \times r$ and \mathbf{B} is $r \times m$, then $\mathbf{A B}=\left[\sum_{=1}^{r} a_{i k} b_{k j}\right]$.
- If \mathbf{A} is $n \times r$ and \mathbf{B} is $r \times n$, then $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.
- The $r \times r$ matrix \mathbf{A} is said to be positive definite if $\mathbf{b}^{\prime} \mathbf{A} \mathbf{b}>0$ for every nonzero $r \times 1$ vector \mathbf{b}.
- The inverse of a square symmetric matrix exists if and only if it is positive definite.
- $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$
- $V(\mathbf{X})=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)^{\prime}\right)$
- $C(\mathbf{X}, \mathbf{Y})=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right)$
- If \mathbf{X} and \mathbf{Y} are independent, $E(\mathbf{X Y})=E(\mathbf{X}) E(\mathbf{Y})$.
- If \mathbf{X} and \mathbf{Y} are independent, $V(\mathbf{X}+\mathbf{Y})=V(\mathbf{X})+V(\mathbf{Y})$.
- The multivariate normal density is $f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$.
- If $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and \mathbf{A} is a matrix of constants, $\mathbf{A X} \sim N\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$.
- For the multivariate normal, $\widehat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime}$
- For the multivariate normal, $-2 \log L(\widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}})=n \log |\widehat{\boldsymbol{\Sigma}}|+n p[1+\log (2 \pi)]$.

