STA 312f07 Assignment 6

Do this assignment in preparation for the quiz on Friday, Oct. 26th. The questions are practice for the quiz, and are not to be handed in.

1. Let

$$
\begin{aligned}
Y_{1} & =\alpha_{1}+\gamma_{1} \xi+\zeta_{1} \\
Y_{2} & =\alpha_{2}+\gamma_{2} \xi+\zeta_{2} \\
X & =\xi+\delta
\end{aligned}
$$

where δ, ξ, ζ_{1} and ζ_{2} are all independent normals, $E(\xi)=\kappa, E(\delta)=E\left(\zeta_{1}\right)=$ $E\left(\zeta_{2}\right)=0, \operatorname{Var}(\xi)=\phi, \operatorname{Var}\left(\zeta_{1}\right)=\psi_{1}, \operatorname{Var}\left(\zeta_{2}\right)=\psi_{2}, \operatorname{Var}(\delta)=\theta_{\delta}$, and $\gamma_{1}, \gamma_{2}, \alpha_{1}$ and α_{2} are fixed constants. The observable variables are X, Y_{1} and Y_{2}.
(a) Give the mean vector of the observed variables X, Y_{1} and Y_{2}.
(b) Give the covariance matrix of the observed variables X, Y_{1} and Y_{2}.
(c) What are the parameters vector of this model? That is, give the parameter vector θ.
(d) Is this model identified? Answer Yes or No and prove your answer.
2. We can write the \log likelihood for the multivariate normal as $\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\begin{align*}
& =\log \prod_{i=1}^{n} \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{k}{2}}} \exp \left[-\frac{1}{2}\left(\mathbf{d}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{d}_{i}-\boldsymbol{\mu}\right)\right] \tag{1}\\
& =-\frac{n}{2} \log |\boldsymbol{\Sigma}|-\frac{n k}{2} \log 2 \pi-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{d}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{d}_{i}-\boldsymbol{\mu}\right) \tag{2}\\
& =-\frac{n}{2} \log |\boldsymbol{\Sigma}|-\frac{n k}{2} \log 2 \pi-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{d}_{i}-\overline{\mathbf{d}}+\overline{\mathbf{d}}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{d}_{i}-\overline{\mathbf{d}}+\overline{\mathbf{d}}-\boldsymbol{\mu}\right) \tag{3}\\
& =-\frac{n}{2} \log |\boldsymbol{\Sigma}|-\frac{n k}{2} \log 2 \pi-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{d}_{i}-\overline{\mathbf{d}}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{d}_{i}-\overline{\mathbf{d}}\right) \\
& \quad-\frac{n}{2}(\overline{\mathbf{d}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{d}}-\boldsymbol{\mu}) \tag{4}\\
& =-\frac{n}{2}\left[\log |\boldsymbol{\Sigma}|+k \log 2 \pi+\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \widehat{\boldsymbol{\Sigma}}\right)+(\overline{\mathbf{d}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{d}}-\boldsymbol{\mu})\right] . \tag{5}
\end{align*}
$$

(a) Fill in the work between (1) and (2).
(b) Fill in the work between (3) and (4).
(c) Fill in the work between (4) and (5).
(d) Starting with (5), prove that the MLE of $\boldsymbol{\mu}$ is $\overline{\mathbf{d}}$.
(e) What is the height of the likelihood function at its highest point?
3. Let

$$
\begin{aligned}
& Y_{1}=\gamma_{1} \xi+\zeta_{1} \\
& Y_{2}=\gamma_{2} \xi+\zeta_{2} \\
& Y_{3}=\gamma_{3} \xi+\zeta_{3}
\end{aligned}
$$

where $\xi, \zeta_{1}, \zeta_{3}$ and ζ_{3} are all independent normals with expected value zero, $\operatorname{Var}(\xi)=1$, $\operatorname{Var}\left(\zeta_{1}\right)=\psi_{1}, \operatorname{Var}\left(\zeta_{2}\right)=\psi_{2}, \operatorname{Var}\left(\zeta_{3}\right)=\psi_{3}$, and γ_{1}, γ_{2} and γ_{3} are fixed constants. The observable variables are Y_{1}, Y_{2} and Y_{3}.
(a) Give the covariance matrix of the observed variables.
(b) What are the parameters vector of this model? That is, give the parameter vector θ.
(c) Is this model identified? Answer Yes or No and prove your answer.

