STA 312f07 Assignment 3

Do this assignment in preparation for the quiz on Friday, Oct. 5th. The questions are practice for the quiz, and are not to be handed in.

1. Let \mathbf{X} and \mathbf{Y} be random matrices of the same dimensions. Show $E(\mathbf{X}+\mathbf{Y})=$ $E(\mathbf{X})+E(\mathbf{Y})$. Recall the definition $E(\mathbf{Z})=\left[E\left(Z_{i, j}\right)\right]$.
2. Let \mathbf{X} be a random matrix, and \mathbf{B} be a matrix of constants. Show $E(\mathbf{X B})=E(\mathbf{X}) \mathbf{B}$. Recall the definition $\mathbf{A B}=\left[\sum_{k} a_{i, k} b_{k, j}\right]$.
3. If the $p \times 1$ random vector \mathbf{X} has variance-covariance matrix $\boldsymbol{\Sigma}$ and \mathbf{A} is an $m \times p$ matrix of constants, prove that the variance-covariance matrix of $\mathbf{A X}$ is $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$. Start with the definition of a variance-covariance matrix:

$$
V(\mathbf{Z})=E\left(\mathbf{Z}-\boldsymbol{\mu}_{z}\right)\left(\mathbf{Z}-\boldsymbol{\mu}_{z}\right)^{\prime}
$$

4. If the $p \times 1$ random vector \mathbf{X} has mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, show $\boldsymbol{\Sigma}=E\left(\mathbf{X X}^{\prime}\right)-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$.
5. Let the $p \times 1$ random vector \mathbf{X} have mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, and let \mathbf{c} be a $p \times 1$ vector of constants. Find $V(\mathbf{X}+\mathbf{c})$. Show your work.
6. Let \mathbf{X} be a $p \times 1$ random vector with mean $\boldsymbol{\mu}_{x}$ and variance-covariance matrix $\boldsymbol{\Sigma}_{x}$, and let \mathbf{Y} be an $r \times 1$ random vector with mean $\boldsymbol{\mu}_{y}$ and variance-covariance matrix $\boldsymbol{\Sigma}_{y}$. Define $C(\mathbf{X}, \mathbf{Y})$ by the $p \times r$ matrix $C(\mathbf{X}, \mathbf{Y})=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right)$.
(a) What is the (i, j) element of $C(\mathbf{X}, \mathbf{Y})$?
(b) Find an expression for $V(\mathbf{X}+\mathbf{Y})$ in terms of $\boldsymbol{\Sigma}_{x}, \boldsymbol{\Sigma}_{y}$ and $C(\mathbf{X}, \mathbf{Y})$. Show your work.
(c) Let \mathbf{c} be a $p \times 1$ vector of constants and \mathbf{d} be an $r \times 1$ vector of constants. Find $C(\mathbf{X}+\mathbf{c}, \mathbf{Y}+\mathbf{d})$. Show your work.
7. Let X_{1} be $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and X_{2} be $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$, independent of X_{1}. What is the joint distribution of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$? What is required for Y_{1} and Y_{2} to be independent?
8. Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ be multivariate normal with

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right] \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{2}+X_{3}$. Find the joint distribution of Y_{1} and Y_{2}.
9. Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where \mathbf{X} is an $n \times p$ matrix of known constants, $\boldsymbol{\beta}$ is a $p \times 1$ vector of unknown constants, and $\boldsymbol{\epsilon}$ is multivariate normal with mean zero and covariance matrix $\sigma^{2} \mathbf{I}_{n}$, where $\sigma^{2}>0$ is a constant. In the following, you may use $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$ without proof.
(a) What is the distribution of \mathbf{Y} ?
(b) The maximum likelihood estimate (MLE) of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$. What is the distribution of $\hat{\boldsymbol{\beta}}$? Show the calculations.
(c) Let $\widehat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$. What is the distribution of $\widehat{\mathbf{Y}}$? Show the calculations.
(d) Let the vector of residuals $\mathbf{e}=(\mathbf{Y}-\widehat{\mathbf{Y}})$. What is the distribution of \mathbf{e} ? Show the calculations. Simplify both the expected value (which is zero) and the covariance matrix.

