Random Vectors ${ }^{1}$ STA442/2101 Fall 2017

${ }^{1}$ See last slide for copyright information.

Background Reading: Renscher and Schaalje's Linear models in statistics

- Chapter 3 on Random Vectors and Matrices
- Chapter 4 on the Multivariate Normal Distribution

Overview

(1) Definitions and Basic Results
(2) Multivariate Normal

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution is the distribution of the random matrix. Random matrices with just one column (say, $p \times 1$) may be called random vectors.

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix \mathbf{X} by $\left[X_{i, j}\right]$,

$$
E(\mathbf{X})=\left[E\left(X_{i, j}\right)\right]
$$

Immediately we have natural properties like

$$
\begin{aligned}
E(\mathbf{X}+\mathbf{Y}) & =E\left(\left[X_{i, j}\right]+\left[Y_{i, j}\right]\right) \\
& =\left[E\left(X_{i, j}+Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)+E\left(Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)\right]+\left[E\left(Y_{i, j}\right)\right] \\
& =E(\mathbf{X})+E(\mathbf{Y})
\end{aligned}
$$

Moving a constant through the expected value sign

Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$
\begin{aligned}
E(\mathbf{A X}) & =E\left(\left[\sum_{k=1}^{p} a_{i, k} X_{k, j}\right]\right) \\
& =\left[E\left(\sum_{k=1}^{p} a_{i, k} X_{k, j}\right)\right] \\
& =\left[\sum_{k=1}^{p} a_{i, k} E\left(X_{k, j}\right)\right] \\
& =\mathbf{A} E(\mathbf{X}) .
\end{aligned}
$$

Similar calculations yield $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$.

Variance-Covariance Matrices

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}$. The variance-covariance matrix of \mathbf{X} (sometimes just called the covariance matrix), denoted by $\operatorname{cov}(\mathbf{X})$, is defined as

$$
\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\} .
$$

$\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\}$

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}) & =E\left\{\left(\begin{array}{l}
X_{1}-\mu_{1} \\
X_{2}-\mu_{2} \\
X_{3}-\mu_{3}
\end{array}\right)\left(\begin{array}{lll}
X_{1}-\mu_{1} & X_{2}-\mu_{2} & \left.X_{3}-\mu_{3}\right)
\end{array}\right\}\right. \\
& =E\left\{\begin{array}{lll}
\left(X_{1}-\mu_{1}\right)^{2} & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)^{2} & \left(X_{2}-\mu_{2}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{3}-\mu_{3}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
E\left\{\left(X_{1}-\mu_{1}\right)^{2}\right\} & E\left\{\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{(X _ { 1 } - \mu _ { 1 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{2}-\mu_{2}\right)^{2}\right\} & E\left\{(X _ { 2 } - \mu _ { 2 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)^{2}\right\}
\end{array}\right. \\
& =\left(\begin{array}{lll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var}\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{3}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) & \operatorname{Var}\left(X_{3}\right)
\end{array}\right) .
\end{aligned}
$$

So, the covariance matrix $\operatorname{cov}(\mathbf{X})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Matrix of covariances between two random vectors

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}_{x}$ and let \mathbf{Y} be a $q \times 1$ random vector with $E(\mathbf{Y})=\boldsymbol{\mu}_{y}$. The $p \times q$ matrix of covariances between the elements of \mathbf{X} and the elements of \mathbf{Y} is

$$
\operatorname{cov}(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}
$$

Adding a constant has no effect

- $\operatorname{cov}(\mathbf{X}+\mathbf{a})=\operatorname{cov}(\mathbf{X})$
- $\operatorname{cov}(\mathbf{X}+\mathbf{a}, \mathbf{Y}+\mathbf{b})=\operatorname{cov}(\mathbf{X}, \mathbf{Y})$

These results are clear from the definitions:

- $\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\}$
- $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}$

Sometimes it is useful to let $\mathbf{a}=-\boldsymbol{\mu}_{x}$ and $\mathbf{b}=-\boldsymbol{\mu}_{y}$.

Analogous to $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$, while $\mathbf{A}=\left[a_{i, j}\right]$ is an $r \times p$ matrix of constants. Then

$$
\begin{aligned}
\operatorname{cov}(\mathbf{A X}) & =E\left\{(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})^{\top}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{A}(\mathbf{X}-\boldsymbol{\mu}))^{\top}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top} \mathbf{A}^{\top}\right\} \\
& =\mathbf{A} E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\} \mathbf{A}^{\top} \\
& =\mathbf{A} \operatorname{cov}(\mathbf{X}) \mathbf{A}^{\top} \\
& =\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}
\end{aligned}
$$

The Multivariate Normal Distribution

The $p \times 1$ random vector \mathbf{X} is said to have a multivariate normal distribution, and we write $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if \mathbf{X} has (joint) density

$$
f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right],
$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite.

Σ positive definite

- Positive definite means that for any non-zero $p \times 1$ vector a, we have $\mathbf{a}^{\top} \boldsymbol{\Sigma} \mathbf{a}>0$.
- Since the one-dimensional random variable $Y=\sum_{i=1}^{p} a_{i} X_{i}$ may be written as $Y=\mathbf{a}^{\top} \mathbf{X}$ and $\operatorname{Var}(Y)=\operatorname{cov}\left(\mathbf{a}^{\top} \mathbf{X}\right)=\mathbf{a}^{\top} \mathbf{\Sigma} \mathbf{a}$, it is natural to require that $\boldsymbol{\Sigma}$ be positive definite.
- All it means is that every non-zero linear combination of \mathbf{X} values has a positive variance.
- And recall $\boldsymbol{\Sigma}$ positive definite is equivalent to $\boldsymbol{\Sigma}^{-1}$ positive definite.

Analogies

(Multivariate normal reduces to the univariate normal when $p=1$)

- Univariate Normal
- $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}$
- $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$
- $\frac{(X-\mu)^{2}}{\sigma^{2}} \sim \chi^{2}(1)$
- Multivariate Normal
- $f(\mathbf{x})=\frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$
- $E(\mathbf{X})=\boldsymbol{\mu}, \operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$
- $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$

More properties of the multivariate normal

- If \mathbf{c} is a vector of constants, $\mathbf{X}+\mathbf{c} \sim N(\mathbf{c}+\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- If \mathbf{A} is a matrix of constants, $\mathbf{A X} \sim N\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}\right)$
- Linear combinations of multivariate normals are multivariate normal.
- All the marginals (dimension less than p) of \mathbf{X} are (multivariate) normal, but it is possible in theory to have a collection of univariate normals whose joint distribution is not multivariate normal.
- For the multivariate normal, zero covariance implies independence. The multivariate normal is the only continuous distribution with this property.

An easy example

If you do it the easy way

Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\top}$ be multivariate normal with

$$
\boldsymbol{\mu}=\left(\begin{array}{l}
1 \\
0 \\
6
\end{array}\right) \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{2}+X_{3}$. Find the joint distribution of Y_{1} and Y_{2}.

In matrix terms

$$
Y_{1}=X_{1}+X_{2} \text { and } Y_{2}=X_{2}+X_{3} \text { means } \mathbf{Y}=\mathbf{A} \mathbf{X}
$$

$$
\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

$\mathbf{Y}=\mathbf{A} \mathbf{X} \sim N\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top}\right)$

You could do it by hand, but

```
> mu = cbind(c(1,0,6))
> Sigma \(=\) rbind \((\mathrm{c}(2,1,0)\),
\(+\quad c(1,4,0)\),
\(+\quad c(0,0,2))\)
> \(\mathrm{A}=\mathrm{rbind}(\mathrm{c}(1,1,0)\),
\(+\)
                                c(0,1,1) ) ; A
    \(>\mathrm{A} \% * \mathrm{mu}\)
                                    \# E(Y)
        [,1]
    [1,] 1
    [2,] 6
    > A \%*\% Sigma \%*\% t(A) \# cov(Y)
        [,1] [,2]
    \([1] \quad 8 \quad\),
    \([2] \quad 5 \quad\),
```


A couple of things to prove

- $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$
- \bar{X} and S^{2} independent under normal random sampling.

Recall the square root matrix

Covariance matrix $\boldsymbol{\Sigma}$ is real and symmetric matrix, so we have the spectral decomposition

$$
\begin{aligned}
& \boldsymbol{\Sigma}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\top} \\
&=\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\top} \\
&=\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{I} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\top} \\
&=\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\top} \\
& \mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\top} \\
&=\boldsymbol{\Sigma}^{1 / 2} \quad \boldsymbol{\Sigma}^{1 / 2}
\end{aligned}
$$

So $\boldsymbol{\Sigma}^{1 / 2}=\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\top}$

Square root of an inverse

Positive definite \Rightarrow Positive eigenvalues \Rightarrow Inverse exists

$$
\mathbf{P} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{P}^{\top} \cdot \mathbf{P} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{P}^{\top}=\mathbf{P} \boldsymbol{\Lambda}^{-1} \mathbf{P}^{\top}=\boldsymbol{\Sigma}^{-1}
$$

SO
$\left(\boldsymbol{\Sigma}^{-1}\right)^{1 / 2}=\mathbf{P} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{P}^{\top}$.

It's easy to show

- $\left(\boldsymbol{\Sigma}^{-1}\right)^{1 / 2}$ is the inverse of $\boldsymbol{\Sigma}^{1 / 2}$
- Justifying the notation $\boldsymbol{\Sigma}^{-1 / 2}$

Now we can show $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$ Where $\mathrm{X} \sim N(\mu, \Sigma)$

$$
\begin{aligned}
\mathbf{Y}=\mathbf{X}-\boldsymbol{\mu} & \sim N(\mathbf{0}, \boldsymbol{\Sigma}) \\
\mathbf{Z}=\boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{Y} & \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\
& =N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\
& =N(\mathbf{0}, \mathbf{I})
\end{aligned}
$$

So \mathbf{Z} is a vector of p independent standard normals, and

$$
\mathbf{Y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{Y}=\mathbf{Z}^{\top} \mathbf{Z}=\sum_{j=1}^{p} Z_{i}^{2} \sim \chi^{2}(p)
$$

\bar{X} and S^{2} independent

Let $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$.

$$
\mathbf{X}=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right) \sim N\left(\mu \mathbf{1}, \sigma^{2} \mathbf{I}\right)
$$

$$
\mathbf{Y}=\left(\begin{array}{c}
X_{1}-\bar{X} \\
\vdots \\
X_{n-1}-\bar{X} \\
\bar{X}
\end{array}\right)=\mathbf{A X}
$$

$\mathrm{Y}=\mathrm{AX}$

In more detail

$$
\left(\begin{array}{rrrrr}
1-\frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\
-\frac{1}{n} & 1-\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & 1-\frac{1}{n} & -\frac{1}{n} \\
\frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & \frac{1}{n}
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n-1} \\
X_{n}
\end{array}\right)=\left(\begin{array}{c}
X_{1}-\bar{X} \\
X_{2}-\bar{X} \\
\vdots \\
X_{n-1}-\bar{X} \\
\bar{X}
\end{array}\right)
$$

The argument

$$
\mathbf{Y}=\mathbf{A X}=\left(\begin{array}{c}
X_{1}-\bar{X} \\
\vdots \\
X_{n-1}-\bar{X} \\
\bar{X}
\end{array}\right)=\left(\begin{array}{c}
\\
\mathbf{Y}_{2} \\
\overline{\bar{X}}
\end{array}\right)
$$

- \mathbf{Y} is multivariate normal.
- $\operatorname{Cov}\left(\bar{X},\left(X_{j}-\bar{X}\right)\right)=0$ (Exercise)
- So \bar{X} and \mathbf{Y}_{2} are independent.
- So \bar{X} and $S^{2}=g\left(\mathbf{Y}_{2}\right)$ are independent. \square

Leads to the t distribution

If

- $Z \sim N(0,1)$ and
- $Y \sim \chi^{2}(\nu)$ and
- Z and Y are independent, then

$$
T=\frac{Z}{\sqrt{Y / \nu}} \sim t(\nu)
$$

Random sample from a normal distribution

Let $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$. Then

- $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}=\frac{(\bar{X}-\mu)}{\sigma / \sqrt{n}} \sim N(0,1)$ and
- $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ and
- These quantities are independent, so

$$
\begin{aligned}
T & =\frac{\sqrt{n}(\bar{X}-\mu) / \sigma}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}} \\
& =\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1)
\end{aligned}
$$

Multivariate normal likelihood

For reference

$$
\begin{aligned}
L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\prod_{i=1}^{n} \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}(2 \pi)^{\frac{p}{2}}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\right\} \\
& =|\boldsymbol{\Sigma}|^{-n / 2}(2 \pi)^{-n p / 2} \exp -\frac{n}{2}\left\{\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right)+(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})\right\}
\end{aligned}
$$

where $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}$ is the sample variance-covariance matrix.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17

