Omitted Variables¹ STA442/2101 Fall 2017

¹See last slide for copyright information.

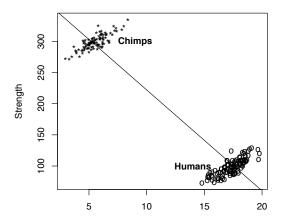
A Practical Data Analysis Problem

When more explanatory variables are added to a regression model and these additional explanatory variables are correlated with explanatory variables already in the model (as they usually are in an observational study),

- Statistical significance can appear when it was not present originally.
- Statistical significance that was originally present can disappear.
- Even the signs of the $\hat{\beta}s$ can change, reversing the interpretation of how their variables are related to the response variable.

An extreme, artificial example To make a point

Suppose that in a certain population, the correlation between age and strength is r = -0.93.



Age and Strength

The fixed x regression model

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,p-1} + \epsilon_i, \text{ with } \epsilon_i \sim N(0, \sigma^2)$$

- If viewed as conditional on X_i = x_i, this model implies independence of ε_i and X_i, because the conditional distribution of ε_i given X_i = x_i does not depend on x_i.
- What is ϵ_i ? Everything else that affects Y_i .
- So the usual model says that if the explanatory variables are random, they have zero covariance with all other variables that are related to Y_i , but are not included in the model.
- For observational data, this assumption is almost always violated.
- Does it matter?

Example The explanatory variables are random.

> Suppose that the variables X_2 and X_3 affect Y and are correlated with X_1 , but they are not part of the data set. The values of the response variable are generated as follows:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \beta_{2}X_{i,3} + \epsilon_{i},$$

independently for i = 1, ..., n, where $\epsilon_i \sim N(0, \sigma^2)$. The explanatory variables are random, with expected value and variance-covariance matrix

$$E\begin{pmatrix}X_{i,1}\\X_{i,2}\\X_{i,3}\end{pmatrix} = \begin{pmatrix}\mu_1\\\mu_2\\\mu_3\end{pmatrix} \text{ and } cov\begin{pmatrix}X_{i,1}\\X_{i,2}\\X_{i,3}\end{pmatrix} = \begin{pmatrix}\phi_{11} & \phi_{12} & \phi_{13}\\ & \phi_{22} & \phi_{23}\\ & & \phi_{33}\end{pmatrix},$$

where ϵ_i is independent of $X_{i,1}$, $X_{i,2}$ and $X_{i,3}$.

Absorb X_2 and X_3

Since X_2 and X_3 are not observed, they are absorbed by the intercept and error term.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \beta_{2}X_{i,3} + \epsilon_{i}$$

= $(\beta_{0} + \beta_{2}\mu_{2} + \beta_{3}\mu_{3}) + \beta_{1}X_{i,1} + (\beta_{2}X_{i,2} + \beta_{3}X_{i,3} - \beta_{2}\mu_{2} - \beta_{3}\mu_{3} + \epsilon_{i})$
= $\beta_{0}' + \beta_{1}X_{i,1} + \epsilon_{i}'.$

And,

$$Cov(X_{i,1},\epsilon'_i) = \beta_2\phi_{12} + \beta_3\phi_{13} \neq 0$$

The "True" Model

Almost always closer to the truth than the usual model, for observational data

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where $E(X_i) = \mu_x$, $Var(X_i) = \sigma_x^2$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma_\epsilon^2$, and $Cov(X_i, \epsilon_i) = c$.

Under this model,

$$\sigma_{xy} = Cov(X_i, Y_i) = Cov(X_i, \beta_0 + \beta_1 X_i + \epsilon_i) = \beta_1 \sigma_x^2 + c$$

Estimate β_1 as usual with least squares

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\widehat{\sigma}_{xy}}{\widehat{\sigma}_{x}^{2}}$$

$$\stackrel{a.s.}{\rightarrow} \frac{\sigma_{xy}}{\sigma_{x}^{2}}$$

$$= \frac{\beta_{1}\sigma_{x}^{2} + c}{\sigma_{x}^{2}}$$

$$= \beta_{1} + \frac{c}{\sigma_{x}^{2}}$$

 $\widehat{\beta_1} \xrightarrow{a.s.} \beta_1 + \frac{c}{\sigma_x^2}$ It converges to the wrong thing.

- $\widehat{\beta}_1$ is inconsistent.
- For large samples it could be almost anything, depending on the value of c, the covariance between X_i and ϵ_i .
- Small sample estimates could be accurate, but only by chance.
- The only time $\hat{\beta}_1$ behaves properly is when c = 0.
- Test $H_0: \beta_1 = 0$: Probability of Type I error goes almost surely to one.

All this applies to multiple regression Of course

When a regression model fails to include all the explanatory variables that contribute to the response variable, and those omitted explanatory variables have non-zero covariance with variables that are in the model, the regression coefficients are inconsistent. Estimation and inference are almost guaranteed to be misleading, especially for large samples.

Correlation-Causation

- The problem of omitted variables is the technical version of the correlation-causation issue.
- The omitted variables are "confounding" variables.
- With random assignment and good procedure, x and ϵ have zero covariance.
- But random assignment is not always possible.
- Most applications of regression to observational data provide very poor information about the regression coefficients.
- Is bad information better than no information at all?

How about another estimation method? Other than ordinary least squares

- Can *any* other method be successful?
- This is a very practical question, because almost all regressions with observational data have the disease.

Omitted Variables

For simplicity, assume normality $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

- Assume (X_i, ϵ_i) are bivariate normal.
- This makes (X_i, Y_i) bivariate normal.

•
$$(X_1, Y_1), \dots, (X_n, Y_n) \stackrel{i.i.d.}{\sim} N_2(\mathbf{m}, \mathbf{V})$$
, where
 $\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} = \begin{pmatrix} \mu_x \\ \beta_0 + \beta_1 \mu_x \end{pmatrix}$

and

$$\mathbf{V} = \left(\begin{array}{cc} v_{11} & v_{12} \\ & v_{22} \end{array} \right) = \left(\begin{array}{cc} \sigma_x^2 & \beta_1 \sigma_x^2 + c \\ & \beta_1^2 \sigma_x^2 + 2\beta_1 c + \sigma_\epsilon^2 \end{array} \right).$$

- All you can ever learn from the data are the approximate values of **m** and **V**.
- Even if you knew **m** and **V** exactly, could you know β_1 ?

Five equations in six unknowns

The parameter is $\theta = (\mu_x, \sigma_x^2, \sigma_\epsilon^2, c, \beta_0, \beta_1)$. The distribution of the data is determined by

$$\begin{pmatrix} m_1 \\ m_2 \end{pmatrix} = \begin{pmatrix} \mu_x \\ \beta_0 + \beta_1 \mu_x \end{pmatrix} \text{ and } \begin{pmatrix} v_{11} & v_{12} \\ & v_{22} \end{pmatrix} = \begin{pmatrix} \sigma_x^2 & \beta_1 \sigma_x^2 + c \\ & \beta_1^2 \sigma_x^2 + 2\beta_1 c + \sigma_\epsilon^2 \end{pmatrix}$$

•
$$\mu_x = m_1$$
 and $\sigma_x^2 = v_{11}$.

- The remaining 3 equations in 4 unknowns have infinitely many solutions.
- So infinitely many sets of parameter values yield the *same* distribution of the sample data.
- This is serious trouble lack of parameter identifiability.
- *Definition*: If a parameter is a function of the distribution of the observable data, it is said to be *identifiable*.

Skipping the High School algebra $\theta = (\mu_x, \sigma_x^2, \sigma_{\epsilon}^2, c, \beta_0, \beta_1)$

- For any given m and V, all the points in a one-dimensional subset of the 6-dimensional parameter space yield m and V, and hence the same distribution of the sample data.
- In that subset, values of β₁ range from −∞ to −∞, so m and V could have been produced by any value of β₁.
- There is no way to distinguish between the possible values of β_1 based on sample data.
- The problem is fatal, if all you can observe is a single X and a single Y.

Details for the record $\theta = (\mu_x, \sigma_x^2, \sigma_\epsilon^2, c, \beta_0, \beta_1)$

For any given \mathbf{m} and \mathbf{V} , all the points in a one-dimensional subset of the 6-dimensional parameter space yield \mathbf{m} and \mathbf{V} , and hence the same distribution of the sample data.

•
$$\mu_x = m_1$$
 and $\sigma_x^2 = v_{11}$ remain fixed.

•
$$\sigma_{\epsilon}^2 \ge |\mathbf{V}|/v_{11}$$

• When
$$\sigma_{\epsilon}^2 = |\mathbf{V}|/v_{11}, \, \beta_1 = v_{12}/v_{11}$$

- For $\sigma_{\epsilon}^2 > |\mathbf{V}|/v_{11}$, two values of β_1 are compatible with \mathbf{m} and \mathbf{V} .
- As σ²_ϵ increases, the lower β₁ goes to −∞ and the upper β₁ goes to −∞.
- β_0 and c are linear functions of β_1 :

•
$$\beta_0 = m_2 - \beta_1 m_1$$

•
$$c = v_{12} - \beta_1 v_{11}$$

• This set of parameter values is geometrically interesting.

Instrumental Variables (Wright, 1928) A partial solution

- An instrumental variable is a variable that is correlated with an explanatory variable, but is not correlated with any error terms and has no direct effect on the response variable.
- Usually, the instrumental variable *influences* the explanatory variable.
- An instrumental variable is often not the main focus of attention; it's just a tool.

A Simple Example

What is the contribution of income to credit card debt?

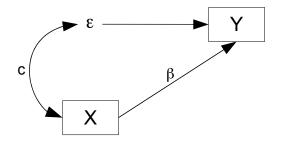
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

where $E(X_i) = \mu_x$, $Var(X_i) = \sigma_x^2$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma_\epsilon^2$, and $Cov(X_i, \epsilon_i) = c$.

A path diagram

$$Y_i = \alpha + \beta X_i + \epsilon_i,$$

where $E(X_i) = \mu$, $Var(X_i) = \sigma_x^2$, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma_\epsilon^2$, and
 $Cov(X_i, \epsilon_i) = c.$



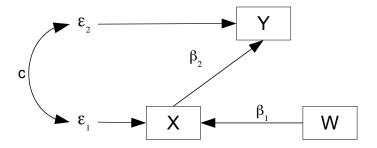
Least squares estimate of β is inconsistent, and so is every other possible estimate. If the data are normal.

Add an instrumental variable X is income, Y is credit card debt.

Focus the study on real estate agents in many cities. Include median price of resale home W_i .

$$X_i = \alpha_1 + \beta_1 W_i + \epsilon_{i1}$$

$$Y_i = \alpha_2 + \beta_2 X_i + \epsilon_{i2}$$



Main interest is in β_2 .

Omitted Variables

Instrumental Variables

Base estimation and inference on the covariance matrix of (W_i, X_i, Y_i) : Call it $V = [v_{ij}]$

Based on $X_i = \alpha_1 + \beta_1 W_i + \epsilon_{i1}$ and $Y_i = \alpha_2 + \beta_2 X_i + \epsilon_{i2}$,

		W	X	Y
V =	W	σ_w^2	$eta_1\sigma_w^2$	$eta_1eta_2\sigma_w^2$
	X		$\beta_1^2\sigma_w^2+\sigma_1^2$	$\beta_1 \beta_2 \sigma_w^2$ $\beta_2 (\beta_1^2 \sigma_w^2 + \sigma_1^2) + c$
	Y			$\beta_1^2\beta_2^2\sigma_w^2+\beta_2^2\sigma_1^2+2\beta_2c+\sigma_2^2$
	$\beta_2 = \frac{v_{13}}{v_{12}}$			

And all the other parameters are identifiable too.

A close look

The v_{ij} are elements of the covariance matrix of the observable data.

$$\beta_2 = \frac{v_{13}}{v_{12}} = \frac{\beta_1 \beta_2 \sigma_w^2}{\beta_1 \sigma_w^2} = \frac{Cov(W, Y)}{Cov(W, X)}$$

• \hat{v}_{ij} are sample variances and covariances.

•
$$\widehat{v}_{ij} \stackrel{a.s.}{\to} v_{ij}.$$

- It is safe to assume $\beta_1 \neq 0$.
- Because it's the connection between real estate prices and the income of real estate agents.
- $\frac{\hat{v}_{13}}{\hat{v}_{12}}$ is a (strongly) consistent estimate of β_2 .
- $H_0: \beta_2 = 0$ is true if and only if $v_{13} = 0$.
- Test $H_0: v_{13} = 0$ by standard methods.

Comments

- Instrumental variables can help with measurement error in the explanatory variables too.
- Good instrumental variables are not easy to find.
- They will not just happen to be in the data set, except by a miracle.
- They really have to come from another universe, but still have a strong and clear effect.
- Wright's original example was tax policy for cooking oil.
- Econometricians are good at this.
- Time series applications are common.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17