Some Large Sample Chi-squared Tests ${ }^{1}$ STA442/2101 Fall 2017

${ }^{1}$ See last slide for copyright information.

Overview

(1) Large-Sample Chi-square
(2) Within cases
(3) Multiple comparisons

4 Between cases

Large-Sample Chi-square

Let $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then recall

$$
(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)
$$

It's true asymptotically too.

Using $(\mathbf{X}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$

Suppose

- $\sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$ and
- $\widehat{\boldsymbol{\Sigma}}_{n} \xrightarrow{p} \boldsymbol{\Sigma}$.

Then approximately as $n \rightarrow \infty, \mathbf{T}_{n} \sim N\left(\boldsymbol{\theta}, \frac{1}{n} \boldsymbol{\Sigma}\right)$, and

$$
\begin{aligned}
W_{n}= & \left(\mathbf{T}_{n}-\boldsymbol{\theta}\right)^{\top}\left(\frac{1}{n} \boldsymbol{\Sigma}\right)^{-1}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \sim \chi^{2}(p) \\
& \| \\
& n\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \\
\approx & n\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right)^{\top} \widehat{\boldsymbol{\Sigma}}_{n}^{-1}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \\
\sim & \chi^{2}(p)
\end{aligned}
$$

Or we could be more precise

Suppose

$$
\begin{aligned}
& \text { - } \sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma}) \text { and } \\
& \text { - } \widehat{\boldsymbol{\Sigma}}_{n} \xrightarrow{p} \boldsymbol{\Sigma} .
\end{aligned}
$$

Then $\widehat{\boldsymbol{\Sigma}}_{n}^{-1} \xrightarrow{p} \boldsymbol{\Sigma}^{-1}$, and by a Slutsky lemma,

$$
\binom{\sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right)}{\widehat{\boldsymbol{\Sigma}}_{n}^{-1}} \xrightarrow{d}\binom{\mathbf{T}}{\boldsymbol{\Sigma}^{-1}} .
$$

By continuity,

$$
\begin{aligned}
W_{n} & =\left(\sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right)\right)^{\top} \widehat{\boldsymbol{\Sigma}}_{n}^{-1} \sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \\
& =n\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right)^{\top} \widehat{\boldsymbol{\Sigma}}_{n}^{-1}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \\
& \xrightarrow{d} \mathbf{T}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{T} \\
& \sim \chi^{2}(p)
\end{aligned}
$$

If $H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$ is true

Where \mathbf{L} is $r \times p$ and of full row rank
Asymptotically, $\mathbf{L T} \mathbf{T}_{n} \sim N\left(\mathbf{L} \boldsymbol{\theta}, \frac{1}{n} \mathbf{L} \boldsymbol{\Sigma} \mathbf{L}^{\top}\right)$. So

$$
\begin{aligned}
& \left(\mathbf{L} \mathbf{T}_{n}-\mathbf{L} \boldsymbol{\theta}\right)^{\top}\left(\frac{1}{n} \mathbf{L} \mathbf{\Sigma} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{L} \boldsymbol{\theta}\right) \sim \chi^{2}(r) \\
& n\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \mathbf{\Sigma} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right) \\
\approx & n\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right) \\
=W_{n} \sim & \chi^{2}(r)
\end{aligned}
$$

Or we could be more precise and use Slutsky lemmas.

Test of $H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$

Where \mathbf{L} is $r \times p$ and of rank r
$W_{n}=n\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)$
Distributed approximately as chi-squared with r degrees of freedom under H_{0}.

If \mathbf{T}_{n} is the maximum likelihood estimator of $\boldsymbol{\theta}$, it's called a Wald test (and $\widehat{\boldsymbol{\Sigma}}_{n}$ has a special form).

Example: The statclass data

Fifty-eight students in a Statistics class took 8 quizzes, a midterm test and a final exam. They also had 9 computer assignments. The instructor wants to compare average performance on the four components of the grade.

- How about a model?
- Should we assume normality?
- Does it make sense to assume quiz marks independent of final exam marks?
- Does this remind you of a matched t-test?

Within cases versus between cases

- Want to compare average performance under several conditions, which are often experimental conditions, but not always.
- When a case (person, rat, school, etc.) appears in all the conditions, it's called a within cases design. Think of the matched t-test.
- When a case appears in only one condition, it's called a between cases design. Think of the two-sample t-test.
- Comparing performance on quizzes, midterm, final and computer assignments is within-cases.

Assume multivariate normality?

Histogram of computer

A model for the statclass data

Fifty-eight students in a Statistics class took 8 quizzes, a midterm test and a final exam. They also had 9 computer assignments.

Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from an unknown distribution with mean $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)^{\top}$ and covariance matrix $\boldsymbol{\Sigma}$.
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$

Applying $W_{n}=n\left(\mathbf{L T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\Sigma}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L T}_{n}-\mathbf{h}\right)$

To test $H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$

- Test is based on $\sqrt{n}\left(\mathbf{T}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$
- CLT says $\sqrt{n}\left(\overline{\mathbf{Y}}_{n}-\boldsymbol{\mu}\right) \xrightarrow{d} \mathbf{Y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$
- So $\mathbf{T}_{n}=\overline{\mathbf{Y}}_{n}$ and $\boldsymbol{\theta}=\boldsymbol{\mu}$.
- Sample variance-covariance matrix is good enough for $\widehat{\boldsymbol{\Sigma}}_{n} \xrightarrow{p} \boldsymbol{\Sigma}$
- Write $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ as $\mathbf{L} \boldsymbol{\mu}=\mathbf{h}$

$H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$

To test equality of four means

$$
\left.\begin{array}{c}
\mathbf{L} \\
\left(\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right)
\end{array} \begin{array}{c}
\boldsymbol{\mu} \\
=
\end{array} \begin{array}{c}
\mathbf{0} \\
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Read the data

From

http://www.utstat.utoronto.ca/ brunner/data/legal/LittleStatclassdata.txt
> statclass = read.table("http://www.utstat.utoronto.ca/~brunner/data/legal/Lit
> head(statclass); attach(statclass)

	QuizAve	CompAve	MidTerm	FinalExam
1	4.9	4.6	55	43
2	8.2	9.3	66	79
3	9.0	9.9	94	67
4	9.1	9.8	81	65
5	7.5	7.9	57	52
6	7.5	7.2	77	64

> QuizAve = $10 *$ QuizAve; CompAve $=10 *$ CompAve
> datta = data.frame(QuizAve, CompAve, MidTerm, FinalExam)
> ybar $=$ apply(datta, 2 , mean) ; ybar

QuizAve	CompAve	MidTerm	FinalExam
72.56897	84.00000	68.87931	49.44828

Boxplots

boxplot(datta); title("Score out of 100 Percent")

Score out of 100 Percent

Covariances and Correlations

```
> sigmahat = var(datta); sigmahat
```

	QuizAve	CompAve	MidTerm	FinalExam
QuizAve	120.38990	62.807018	60.10496	71.758016
CompAve	62.80702	134.736842	27.77193	6.350877
MidTerm	60.10496	27.771930	223.37114	99.633999
FinalExam	71.75802	6.350877	99.63400	272.777979

$>\operatorname{cor}($ datta)

	QuizAve	CompAve	MidTerm	FinalExam
QuizAve	1.0000000	0.49313970	0.3665234	0.39597772
CompAve	0.4931397	1.00000000	0.1600845	0.03312729
MidTerm	0.3665234	0.16008452	1.0000000	0.40363552
FinalExam	0.3959777	0.03312729	0.4036355	1.00000000

Scatterplot matrix
 pairs (datta)

Calculate $W_{n}=n\left(\mathbf{L T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\Sigma}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L T}_{n}-\mathbf{h}\right)$

To test $H_{0}: \mathbf{L} \boldsymbol{\mu}=\mathbf{0}$

```
> L = rbind(c(1,-1,0,0),
+ c(0,1,-1,0),
+ c(0,0,1,-1) )
> n = length(quiz); n
```

[1] 58
$>\mathrm{Wn}=\mathrm{n} * \mathrm{t}(\mathrm{L} \% * \%$ ybar $) \% * \%$ solve(L\%*\%sigmahat\%*\%t(L)) \% $\%$ L\% $\%$ \%ybar
> Wn
[,1]
[1,] 176.8238
> Wn = as.numeric(Wn)
> pvalue $=1$-pchisq(Wn, $d f=3$); pvalue
[1] 0

Conclude that the four means are not all equal. Which ones are different from one another? Need follow-up tests.

The R function Wtest

Approximate asymptotic covariance matrix $\widehat{\mathbf{V}}_{n}=\frac{1}{n} \widehat{\boldsymbol{\Sigma}}_{n}$

$$
\begin{aligned}
W_{n} & =n\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right) \\
& =\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\mathbf{V}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \mathbf{T}_{n}-\mathbf{h}\right)
\end{aligned}
$$

Wtest = function(L,Tn, Vn,h=0) \# HO: L theta = h
\# Note Vn is the estimated asymptotic covariance matrix of Tn ,
\# so it's Sigma-hat divided by n. For Wald tests based on numerical
\# MLEs, $\mathrm{Tn}=$ theta-hat, and Vn is the inverse of the Hessian.

```
{
Wtest = numeric(3)
names(Wtest) = c("W","df","p-value")
r = dim(L) [1]
W = t(L%*%Tn-h) %*% solve(L%*%Vn%*%t(L)) %*%
    (L%*%Tn-h)
W = as.numeric(W)
pval = 1-pchisq(W,r)
Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval
Wtest
} # End function Wtest
```


Illustrate the Wtest function

```
For \(H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}\), got \(W_{n}=176.8238, d f=3, p \approx 0\).
> source("http://www.utstat.toronto.edu/~ brunner/Rfunctions/Wtest.txt")
> V = sigmahat / length(final)
> \# Asymptotic covariance matrix of Y-bar is Sigma/n
\(>\mathrm{LL}=\operatorname{rbind}(\mathrm{c}(1,-1,0,0)\),
\(+\quad c(0,1,-1,0)\),
\(+\quad c(0,0,1,-1))\)
> Wtest(LL,ybar,V)
W df p-value
\(176.8238 \quad 3.0000 \quad 0.0000\)
```

$>$ ybar
quiz computer midterm final
72.5862183 .9846768 .8793149 .44828

Is average quiz score different from midterm?
$>\mathrm{L} 1=\operatorname{rbind}(c(1,0,-1,0)) ; \mathrm{n}=$ length (final)
> Wtest(L=L1,Tn=ybar, Vn=sigmahat/n)
W df p-value
3.567558781 .000000000 .05891887

Another application: Mean index numbers

In a study of consumers' opinions of 5 popular TV programmes, 240 consumers who watch all the shows at least once a month completed a computerized interview. On one of the screens, they indicated how much they enjoyed each programme by mouse-clicking on a 10 cm line. One end of the line was labelled "Like very much," and the other end was labelled "Dislike very much." So each respondent contributed 5 ratings, on a continuous scale from zero to ten.

The study was commissioned by the producers of one of the shows, which will be called "Programme E." Ratings of Programmes A through D were expressed as percentages of the rating for Programme E, and these were described as "Liking indexed to programme E."

In statistical language

We have $X_{i, 1}, \ldots X_{i, 5}$ for $i=1, \ldots, n$, and we calculate

$$
Y_{i, j}=100 \frac{X_{i, j}}{X_{i, 5}}
$$

- We want confidence intervals for the 4 mean index numbers, and tests of differences between means.
- Observations from the same respondent are definitely not independent.
- What is the distribution?
- What is a reasonable model?

Model

Let $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}$ be a random sample from an unknown multivariate distribution F with expected value $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

One way to think about it is

- The parameter is the unknown distribution F.
- The parameter space is a space of distribution functions.
- $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are functions of F.
- We're only interested in $\boldsymbol{\mu}$.

We have the tools we need

- $\sqrt{n}\left(\overline{\mathbf{Y}}_{n}-\boldsymbol{\mu}\right) \xrightarrow{d} \mathbf{Y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$ and
- For $\widehat{\boldsymbol{\Sigma}}_{n} \xrightarrow{p} \boldsymbol{\Sigma}$, use the sample covariance matrix.
- $H_{0}: \mathbf{L} \boldsymbol{\mu}=\mathbf{h}$

$$
W_{n}=n\left(\mathbf{L} \overline{\mathbf{Y}}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \overline{\mathbf{Y}}_{n}-\mathbf{h}\right)
$$

Read the data

> Y = read.table("http://www.utstat.toronto.edu/~brunner/data/legal/TVshows.data.txt")
> head(Y)

	A	B	C	D
1	101.3	81.0	101.8	89.6
2	94.0	85.3	76.3	100.8
3	145.4	138.7	151.0	148.3
4	72.0	86.1	96.1	96.3
5	107.3	102.9	102.4	107.3
6	80.3	93.6	89.8	85.7
$>$	$\mathrm{n}=\operatorname{dim}(\mathrm{Y})[1] ; \mathrm{n}$			

[1] 240

Confidence intervals: $\bar{Y} \pm z_{\alpha / 2} \frac{S}{\sqrt{n}}$

```
> ave = apply(Y,2,mean); ave
    A B C D
101.65958 98.50167 99.39958 103.94167
> v = apply(Y,2,var) # Sample variances with n-1
> stderr = sqrt(v/n)
> me95 = 1.96*stderr
> lower95 = ave-me95
> upper95 = ave+me95
> Z = (ave-100)/stderr
> rbind(ave,marginerror95,lower95,upper95,Z)
\begin{tabular}{lrrrr} 
& A & B & C & D \\
ave & 101.659583 & 98.501667 & 99.3995833 & 103.941667 \\
marginerror95 & 1.585652 & 1.876299 & 1.7463047 & 1.469928 \\
lower95 & 100.073931 & 96.625368 & 97.6532786 & 102.471739 \\
upper95 & 103.245236 & 100.377966 & 101.1458880 & 105.411594 \\
Z & 2.051385 & -1.565173 & -0.6738897 & 5.255814
\end{tabular}
```


What if we "assume" normality and use t ?

> rbind(ave, lower95, upper95, Z)

ave	101.659583	98.501667	99.3995833	103.941667
lower95	100.073931	96.625368	97.6532786	102.471739
upper95	103.245236	100.377966	101.1458880	105.411594
Z	2.051385	-1.565173	-0.6738897	5.255814

> attach(Y) \# So A, B, C, D are available
> t.test ($\mathrm{A}, \mathrm{mu}=100$)

One Sample t-test
data: A
$\mathrm{t}=2.0514, \mathrm{df}=239, \mathrm{p}$-value $=0.04132$
alternative hypothesis: true mean is not equal to 100 95 percent confidence interval:

$$
100.0659103 .2533
$$

sample estimates:
mean of x
101.6596

Test equality of means

$>S=\operatorname{var}(Y) ; S$
A B C D
A 157.0779110 .77831106 .56220109 .6234
B $110.7783219 .93950 \quad 95.66686100 .3585$
C 106.5622 95.66686190 .51937106 .2501
D $109.6234100 .35851 \quad 106.25006134 .9867$
$>\operatorname{cor}(\mathrm{Y})$
A B C D
A 1.00000000 .59599910 .61599340 .7528355
B 0.59599911 .00000000 .46734800 .5824479
C 0.61599340 .46734801 .00000000 .6625431
D 0.75283550 .58244790 .66254311 .0000000
$>$
> L4 = rbind $c(1,-1,0,0)$,
$+\quad c(0,1,-1,0)$,
$+\quad c(0,0,1,-1) \quad)$
> Wtest (L=L4,Tn=ave, Vn=S/n)
W df p-value
$7.648689 \mathrm{e}+013.000000 \mathrm{e}+002.220446 \mathrm{e}-16$

Pairwise comparisons

Where is the effect coming from?

Set it up.

> testmatrix $=\operatorname{diag}(1,4,4)$ \# Start with an identity matrix.
> labelz = colnames(Y)
> rownames(testmatrix) = labelz; colnames(testmatrix) = labelz
> testmatrix

A B C D
A 1000
B 0100
C 0010
D 0001

Fill the matrix

```
\(>\) for \((i\) in 1:3)
\(+\quad\{\)
\(+\quad\) for \((j\) in \((i+1): 4)\)
\(+\quad\{\)
\(+\quad \mathrm{LL}=\operatorname{rbind}(c(0,0,0,0))\)
\(+\quad \mathrm{LL}[\mathrm{i}]=1 ; \mathrm{LL}[j]=-1\)
\(+\quad\) print(LL) \# Just to check
\(+\quad W=\) Wtest (L=LL,Tn=ave, Vn=S/n)
\(+\quad\) testmatrix[i,j] \(=\mathrm{W}[1]\); testmatrix[j,i]=W[3]
\(+\quad\}\) \# Next j
\(+\quad\}\) \# Next i
    [,1] [,2] [,3] [,4]
\(\left[\begin{array}{lllll}{[1,]} & 1 & -1 & 0 & 0\end{array}\right.\)
    [,1] [,2] [,3] [,4]
\(\left[\begin{array}{lllll}{[1,]} & 1 & 0 & -1 & 0\end{array}\right.\)
    [,1] [,2] [,3] [,4]
\(\begin{array}{ccccc}{[1,]} & 1 & 0 & 0 & -1\end{array}\)
    [,1] [,2] [,3] [,4]
\([1] \quad 0 \quad 1 \quad-,1 \quad 0\)
    [,1] [,2] [,3] [,4]
\(\begin{array}{lllll}{[1,]} & 0 & 1 & 0 & -1\end{array}\)
```


Look at the $\binom{4}{2}$ pairwise comparisons

```
> # Test statistics (chisq with 1 df) are in the upper triangle,
> # p-values in lower
> round(testmatrix,4)
```

	A	B	C	D
A	1.0000	15.3954	9.1158	17.1647
B	0.0001	1.0000	0.8831	46.0573
C	0.0025	0.3474	1.0000	43.8147
D	0.0000	0.0000	0.0000	1.0000

> ave

A B C D
$101.65958 \quad 98.50167 \quad 99.39958 \quad 103.94167$

Average reported enjoyment was greatest for Program D, followed by A. The results are consistent with no difference between B and C.

Multiple Comparisons
 The problem

- Most hypothesis tests are designed to be carried out in isolation.
- But if you do a lot of tests and all the null hypotheses are true, the chance of rejecting at least one of them can be a lot more than α. This is inflation of the Type I error probability.
- Otherwise known as the curse of a thousand t-tests.
- Multiple comparison procedures (sometimes called follow-up tests, post hoc tests, probing) try to offer a solution.

Multiple Comparisons
 A solution

- Protect a family of tests against Type I error at some joint significance level α.
- If all the null hypotheses are true, the probability of rejecting at least one is no more than α.
- Many methods are available; we'll consider just one for now: Bonferroni.

Bonferroni multiple comparisons

- Based on Bonferroni's inequality:

$$
\operatorname{Pr}\left\{\cup_{j=1}^{k} A_{j}\right\} \leq \sum_{j=1}^{k} \operatorname{Pr}\left\{A_{j}\right\}
$$

- Applies to any collection of k tests.
- Assume that all k null hypotheses are true.
- Event A_{j} is that null hypothesis j is rejected.
- Do the tests as usual.
- Adjust the significance level, and reject each H_{0} if $p<\alpha / k$.

$$
\operatorname{Pr}\left\{\cup_{j=1}^{k} A_{j}\right\} \leq \sum_{j=1}^{k} \operatorname{Pr}\left\{A_{j}\right\}=\sum_{j=1}^{k} \alpha / k=\alpha
$$

- Or, adjust the p-values. Multiply them by k, and reject if $p k<\alpha$.

TV show example

	A	B	C	D
A	1.0000	15.3954	9.1158	17.1647
B	0.0001	1.0000	0.8831	46.0573
C	0.0025	0.3474	1.0000	43.8147
D	0.0000	0.0000	0.0000	1.0000

- There are $\binom{4}{2}=6=k$ tests in the family.
- Adjusted α is $0.05 / 6=0.0083$.
- Conclusions don't change in this case.
- What if the family includes comparisons with Program E? Now there are 10 comparisons and H_{0} is rejected if $p<\alpha / 10=0.005$.

Include Z tests for comparison with Program E

 Adjusted significance level is $\alpha / 10=0.005$```
> pval = 2*pnorm(-abs(Z))
> rbind(Z,pval)
```

|  | A | B | C | D |
| :--- | ---: | ---: | ---: | ---: |
| Z | 2.05138485 | -1.5651734 | -0.6738897 | $5.255814 \mathrm{e}+00$ |
| pval | 0.04022948 | 0.1175423 | 0.5003815 | $1.473709 \mathrm{e}-07$ |

Add to the conclusions: Program $D$ is preferred to $E$, but $E$ is in a statistical tie with $A, B$ and $C$.

## Advantages and disadvantages

Of the Bonferroni method

- Advantage: Flexible - Applies to any collection of hypothesis tests.
- Advantage: Easy to do.
- Disadvantage: Must know what all the tests are before seeing the data. So we were cheating.
- Disadvantage: A little conservative; the true joint significance level is less than $\alpha$.


## Practical versus statistical significance

 boxplot(Y)

## Between cases: Independent groups

Like a one-factor ANOVA

- Have $n$ cases, separated into $p$ groups: Maybe experimental treatment (say, drug) or occupation of main wage earner in family.
- $n_{1}+n_{2}+\cdots+n_{p}=n$
- Response variable is either binary or quantity of something, like annual energy consumption.
- No reason to believe normality.
- No reason to believe equal variances.
- $H_{0}: \mathbf{L} \boldsymbol{\mu}=\mathbf{h}$
- For example, $H_{0}: \mu_{1}=\ldots=\mu_{p}$
- Or $\mu_{2}=\mu_{7}$


## Basic Idea

The $p$ sample means are independent random variables. Asymptotically,

- $\bar{Y}_{j} \sim N\left(\mu_{j}, \frac{\sigma_{j}^{2}}{n_{j}}\right)$
- The $p \times 1$ random vector $\overline{\mathbf{Y}}_{n} \sim N\left(\boldsymbol{\mu}, \mathbf{V}_{n}\right)$,
- Where $\mathbf{V}_{n}$ is a $p \times p$ diagonal matrix with $j$ th diagonal element $\frac{\sigma_{j}^{2}}{n_{j}}$.
- $\mathbf{L} \overline{\mathbf{Y}}_{n} \sim N_{r}\left(\mathbf{L} \boldsymbol{\mu}, \mathbf{L} \mathbf{V}_{n} \mathbf{L}^{\top}\right)$.
- Approximate $\mathbf{V}_{n}$ with the diagonal matrix $\widehat{\mathbf{V}}_{n}, j$ th diagonal element $\frac{\widehat{\sigma}_{j}^{2}}{n_{j}}$.
- And if $H_{0}: \mathbf{L} \boldsymbol{\mu}=\mathbf{h}$ is true, then asymptotically

$$
W_{n}=\left(\mathbf{L} \overline{\mathbf{Y}}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\mathbf{V}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \overline{\mathbf{Y}}_{n}-\mathbf{h}\right) \sim \chi^{2}(r)
$$

## One little technical issue

- More than one $n_{j}$ is going to infinity.
- The rates at which they go to infinity can't be too different.
- In particular, if $n=n_{1}+n_{2}+\cdots+n_{p}$,
- Then each $\frac{n_{j}}{n}$ must converge to a non-zero constant (in probability).

Loose asymptotic arguments lose this kind of detail.

## Compare High School marks for students at 3 campuses

| Campus | $n$ | Mean | Standard Deviation |
| :--- | :---: | :---: | :---: |
| SG | 3906 | 84.94 | 5.59 |
| UTM | 1583 | 79.68 | 5.82 |
| UTSC | 1849 | 79.96 | 5.98 |

# Compute $W_{n}=\left(\mathbf{L} \overline{\mathbf{Y}}_{n}-\mathbf{h}\right)^{\top}\left(\mathbf{L} \widehat{\mathrm{V}}_{n} \mathbf{L}^{\top}\right)^{-1}\left(\mathbf{L} \overline{\mathbf{Y}}_{n}-\mathbf{h}\right)$ 

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$

| Campus | $n$ | Mean | Standard Deviation |
| :--- | :---: | :---: | :---: |
| SG | 3906 | 84.94 | 5.59 |
| UTM | 1583 | 79.68 | 5.82 |
| UTSC | 1849 | 79.96 | 5.98 |

> source("http://www.utstat.utoronto.ca/~ $b r u n n e r / R f u n c t i o n s / W t e s t . t x t ") ~$
$>\mathrm{n}=\mathrm{c}(3906,1583,1849)$
$>y b a r=c(84.94,79.68,79.96)$
$>$ Vhat $=\operatorname{diag}\left(c(5.59,5.82,5.98)^{\sim} 2 / n\right)$; Vhat
$[, 1] \quad[, 2] \quad[, 3]$
[1,] 0.0080000260 .00000000 .0000000
[2,] 0.0000000000 .02139760 .0000000
[3,] 0.0000000000 .00000000 .0193404
> L1 = rbind $(c(1,-1,0)$,
$+\quad c(0,1,-1) \quad)$
> Wtest(L1,ybar, Vhat)
W df p-value
$1441.58 \quad 2.00 \quad 0.00$

# Test difference between UTM and UTSC 

| Campus | $n$ | Mean | Standard Deviation |
| :--- | :---: | :---: | :---: |
| SG | 3906 | 84.94 | 5.59 |
| UTM | 1583 | 79.68 | 5.82 |
| UTSC | 1849 | 79.96 | 5.98 |

> \# UTM vs. UTSC
> Wtest(rbind(c(0,1,-1)), ybar, Vhat) W df p-value
1.92449311 .00000000 .1653622

There are two more pairwise comparisons.

## Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17

