Some Large Sample Chi-squared Tests¹ STA442/2101 Fall 2017

 $^{^1 \}mathrm{See}$ last slide for copyright information.

2 Within cases

Large-Sample Chi-square

Let $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then recall

$(\mathbf{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$

It's true asymptotically too.

Using $(\mathbf{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$

Suppose

•
$$\sqrt{n} (\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\rightarrow} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$
 and
• $\widehat{\boldsymbol{\Sigma}}_n \stackrel{p}{\rightarrow} \boldsymbol{\Sigma}.$

Then approximately as $n \to \infty$, $\mathbf{T}_n \sim N\left(\boldsymbol{\theta}, \frac{1}{n}\boldsymbol{\Sigma}\right)$, and

$$W_n = (\mathbf{T}_n - \boldsymbol{\theta})^\top \left(\frac{1}{n}\boldsymbol{\Sigma}\right)^{-1} (\mathbf{T}_n - \boldsymbol{\theta}) \sim \chi^2(p)$$

...

$$n (\mathbf{T}_n - \boldsymbol{\theta})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{T}_n - \boldsymbol{\theta})$$

$$\approx n (\mathbf{T}_n - \boldsymbol{\theta})^\top \boldsymbol{\widehat{\Sigma}}_n^{-1} (\mathbf{T}_n - \boldsymbol{\theta})$$

$$\sim \chi^2(p)$$

•

Or we could be more precise

Suppose

•
$$\sqrt{n} (\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\rightarrow} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$
 and
• $\widehat{\boldsymbol{\Sigma}}_n \stackrel{p}{\rightarrow} \boldsymbol{\Sigma}.$

Then
$$\widehat{\Sigma}_n^{-1} \xrightarrow{p} \Sigma^{-1}$$
, and by a Slutsky lemma,
 $\begin{pmatrix} \sqrt{n} (\mathbf{T}_n - \boldsymbol{\theta}) \\ \widehat{\Sigma}_n^{-1} \end{pmatrix} \xrightarrow{d} \begin{pmatrix} \mathbf{T} \\ \Sigma^{-1} \end{pmatrix}$

By continuity,

$$W_n = \left(\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta})\right)^\top \widehat{\boldsymbol{\Sigma}}_n^{-1} \sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta})$$

= $n \left(\mathbf{T}_n - \boldsymbol{\theta}\right)^\top \widehat{\boldsymbol{\Sigma}}_n^{-1} \left(\mathbf{T}_n - \boldsymbol{\theta}\right)$
 $\stackrel{d}{\to} \mathbf{T}^\top \mathbf{\Sigma}^{-1} \mathbf{T}$
 $\sim \chi^2(p)$

If $H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ is true Where \mathbf{L} is $r \times p$ and of full row rank

Asymptotically, $\mathbf{LT}_n \sim N\left(\mathbf{L}\boldsymbol{\theta}, \frac{1}{n}\mathbf{L}\boldsymbol{\Sigma}\mathbf{L}^{\top}\right)$. So

$$(\mathbf{LT}_n - \mathbf{L}\boldsymbol{\theta})^{\top} \left(\frac{1}{n}\mathbf{L}\boldsymbol{\Sigma}\mathbf{L}^{\top}\right)^{-1} (\mathbf{LT}_n - \mathbf{L}\boldsymbol{\theta}) \sim \chi^2(r)$$

$$\| n (\mathbf{L}\mathbf{T}_n - \mathbf{h})^\top (\mathbf{L}\mathbf{\Sigma}\mathbf{L}^\top)^{-1} (\mathbf{L}\mathbf{T}_n - \mathbf{h})$$

$$\approx n (\mathbf{L}\mathbf{T}_n - \mathbf{h})^\top (\mathbf{L}\widehat{\mathbf{\Sigma}}_n\mathbf{L}^\top)^{-1} (\mathbf{L}\mathbf{T}_n - \mathbf{h})$$

$$= W_n \sim \chi^2(r)$$

Or we could be more precise and use Slutsky lemmas.

Test of H_0 : $\mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ Where \mathbf{L} is $r \times p$ and of rank r

$$W_n = n \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^{\top} \left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_n \mathbf{L}^{\top} \right)^{-1} \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)$$

Distributed approximately as chi-squared with r degrees of freedom under H_0 .

If \mathbf{T}_n is the maximum likelihood estimator of $\boldsymbol{\theta}$, it's called a *Wald test* (and $\widehat{\boldsymbol{\Sigma}}_n$ has a special form).

Example: The statclass data

Fifty-eight students in a Statistics class took 8 quizzes, a midterm test and a final exam. They also had 9 computer assignments. The instructor wants to compare average performance on the four components of the grade.

- How about a model?
- Should we assume normality?
- Does it make sense to assume quiz marks independent of final exam marks?
- Does this remind you of a matched *t*-test?

Within cases versus between cases

- Want to compare average performance under several conditions, which are often experimental conditions, but not always.
- When a case (person, rat, school, etc.) appears in *all* the conditions, it's called a *within cases* design. Think of the matched *t*-test.
- When a case appears in *only one* condition, it's called a *between cases* design. Think of the two-sample *t*-test.
- Comparing performance on quizzes, midterm, final and computer assignments is within-cases.

Assume multivariate normality?

computer

A model for the statclass data

Fifty-eight students in a Statistics class took 8 quizzes, a midterm test and a final exam. They also had 9 computer assignments.

Let $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ be a random sample from an unknown distribution with mean $\boldsymbol{\mu} = (\mu_1, \mu_2, \mu_3, \mu_4)^{\top}$ and covariance matrix $\boldsymbol{\Sigma}$.

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

Applying
$$W_n = n \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^\top \left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_n \mathbf{L}^\top \right)^{-1} \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)$$

• Test is based on $\sqrt{n} (\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\rightarrow} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$

• CLT says
$$\sqrt{n} \left(\overline{\mathbf{Y}}_n - \boldsymbol{\mu} \right) \stackrel{d}{\rightarrow} \mathbf{Y} \sim N \left(\mathbf{0}, \boldsymbol{\Sigma} \right)$$

• So
$$\mathbf{T}_n = \overline{\mathbf{Y}}_n$$
 and $\boldsymbol{\theta} = \boldsymbol{\mu}$.

- Sample variance-covariance matrix is good enough for $\hat{\Sigma}_n \xrightarrow{p} \Sigma$
- Write $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ as $\mathbf{L}\boldsymbol{\mu} = \mathbf{h}$

Large-Sample Chi-square

Within cases

Multiple comparisons

Between cases

$H_0: \mathbf{L}\boldsymbol{\theta} = \mathbf{h}$ To test equality of four means

Large-Sample Chi-square

Read the data From

http://www.utstat.utoronto.ca/ brunner/data/legal/LittleStatclassdata.txt

> statclass = read.table("http://www.utstat.utoronto.ca/~brunner/data/legal/Lit
> head(statclass); attach(statclass)

	QuizAve	CompAve	MidTerm	FinalExam
1	4.9	4.6	55	43
2	8.2	9.3	66	79
3	9.0	9.9	94	67
4	9.1	9.8	81	65
5	7.5	7.9	57	52
6	7.5	7.2	77	64
>				

```
> QuizAve = 10*QuizAve; CompAve = 10*CompAve
> datta = data.frame(QuizAve, CompAve, MidTerm, FinalExam)
> ybar = apply(datta,2,mean); ybar
```

QuizAve CompAve MidTerm FinalExam 72.56897 84.00000 68.87931 49.44828

Boxplots boxplot(datta); title("Score out of 100 Percent")

Score out of 100 Percent

Covariances and Correlations

> sigmahat = var(datta); sigmahat

	QuizAve	CompAve	MidTerm	FinalExam
QuizAve	120.38990	62.807018	60.10496	71.758016
CompAve	62.80702	134.736842	27.77193	6.350877
MidTerm	60.10496	27.771930	223.37114	99.633999
FinalExam	71.75802	6.350877	99.63400	272.777979

> cor(datta)

 QuizAve
 CompAve
 MidTerm
 FinalExam

 QuizAve
 1.000000
 0.49313970
 0.3665234
 0.39597772

 CompAve
 0.4931397
 1.0000000
 0.1600845
 0.03312729

 MidTerm
 0.3665234
 0.16008452
 1.0000000
 0.40363552

 FinalExam
 0.3959777
 0.03312729
 0.4036355
 1.0000000

Scatterplot matrix pairs(datta)


```
Large-Sample Chi-square Within cases Multiple comparisons Between case

Calculate W_n = n \left( \mathbf{LT}_n - \mathbf{h} \right)^\top \left( \mathbf{L} \widehat{\boldsymbol{\Sigma}}_n \mathbf{L}^\top \right)^{-1} \left( \mathbf{LT}_n - \mathbf{h} \right)

To test H_0 : \mathbf{L} \mu = \mathbf{0}
```

```
> L = rbind(c(1,-1,0,0),
+ c(0,1,-1,0),
+ c(0,0,1,-1))
> n = length(quiz); n
[1] 58
> Wn = n * t(L %*% ybar) %*% solve(L%*%sigmahat%*%t(L)) %*% L%*%ybar
> Wn
        [,1]
[1,] 176.8238
> Wn = as.numeric(Wn)
> pvalue = 1-pchisq(Wn,df=3); pvalue
[1] 0
```

Conclude that the four means are not all equal. Which ones are different from one another? Need follow-up tests.

The R function Wtest Approximate asymptotic covariance matrix $\widehat{\mathbf{V}}_n = \frac{1}{n} \widehat{\boldsymbol{\Sigma}}_n$

$$W_n = n \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^\top \left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_n \mathbf{L}^\top \right)^{-1} \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^{-1}$$
$$= \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^\top \left(\mathbf{L} \widehat{\mathbf{V}}_n \mathbf{L}^\top \right)^{-1} \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^{-1}$$

```
Wtest = function(L.Tn.Vn.h=0) # H0: L theta = h
# Note Vn is the estimated asymptotic covariance matrix of Tn,
# so it's Sigma-hat divided by n. For Wald tests based on numerical
# MLEs, Tn = theta-hat, and Vn is the inverse of the Hessian.
     Ł
     Wtest = numeric(3)
     names(Wtest) = c("W","df","p-value")
     r = dim(L)[1]
     W = t(L%*%Tn-h) %*% solve(L%*%Vn%*%t(L)) %*%
          (L%*%Tn-h)
     W = as.numeric(W)
     pval = 1-pchisq(W,r)
     Wtest[1] = W; Wtest[2] = r; Wtest[3] = pval
     Wtest
     } # End function Wtest
```

Illustrate the Wtest function

For $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$, got $W_n = 176.8238, df = 3, p \approx 0$.

176.8238 3.0000 0.	0000

> ybar

quiz computer midterm final 72.58621 83.98467 68.87931 49.44828

Is average quiz score different from midterm?

Another application: Mean index numbers

In a study of consumers' opinions of 5 popular TV programmes, 240 consumers who watch all the shows at least once a month completed a computerized interview. On one of the screens, they indicated how much they enjoyed each programme by mouse-clicking on a 10cm line. One end of the line was labelled "Like very much," and the other end was labelled "Dislike very much." So each respondent contributed 5 ratings, on a continuous scale from zero to ten.

The study was commissioned by the producers of one of the shows, which will be called "Programme E." Ratings of Programmes A through D were expressed as percentages of the rating for Programme E, and these were described as "Liking indexed to programme E."

In statistical language

We have $X_{i,1}, \ldots, X_{i,5}$ for $i = 1, \ldots, n$, and we calculate

$$Y_{i,j} = 100 \frac{X_{i,j}}{X_{i,5}}$$

- We want confidence intervals for the 4 mean index numbers, and tests of differences between means.
- Observations from the same respondent are definitely not independent.
- What is the distribution?
- What is a reasonable model?

Let $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ be a random sample from an unknown multivariate distribution F with expected value $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

One way to think about it is

- The parameter is the unknown distribution F.
- The parameter space is a space of distribution functions.
- μ and Σ are *functions* of *F*.
- We're only interested in μ .

We have the tools we need

•
$$\sqrt{n}(\overline{\mathbf{Y}}_n - \boldsymbol{\mu}) \stackrel{d}{\rightarrow} \mathbf{Y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$
 and

- For $\widehat{\Sigma}_n \xrightarrow{p} \Sigma$, use the sample covariance matrix.
- $H_0: \mathbf{L}\boldsymbol{\mu} = \mathbf{h}$

$$W_n = n \left(\mathbf{L} \overline{\mathbf{Y}}_n - \mathbf{h} \right)^\top \left(\mathbf{L} \widehat{\mathbf{\Sigma}}_n \mathbf{L}^\top \right)^{-1} \left(\mathbf{L} \overline{\mathbf{Y}}_n - \mathbf{h} \right)$$

Read the data

> Y = read.table("http://www.utstat.toronto.edu/~brunner/data/legal/TVshows.data.txt")

>	> head(Y)					
	А	В	С	D		
1	101.3	81.0	101.8	89.6		
2	94.0	85.3	76.3	100.8		
3	145.4	138.7	151.0	148.3		
4	72.0	86.1	96.1	96.3		
5	107.3	102.9	102.4	107.3		
6	80.3	93.6	89.8	85.7		
> $n = dim(Y)[1]; n$						
[1] 240						

Confidence intervals: $\overline{Y} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$

```
> ave = apply(Y,2,mean); ave
                  В
                            С
        А
                                       D
101.65958 98.50167 99.39958 103.94167
> v = apply(Y,2,var) # Sample variances with n-1
> stderr = sqrt(v/n)
> me95 = 1.96*stderr
> 1 ower 95 = a ve - me 95
> upper95 = ave+me95
> Z = (ave-100)/stderr
> rbind(ave,marginerror95,lower95,upper95,Z)
                       А
                                  В
                                               С
                                                          D
ave
              101.659583 98.501667 99.3995833 103.941667
                           1.876299 1.7463047
marginerror95
                1.585652
                                                   1.469928
lower95
              100.073931 96.625368 97.6532786 102.471739
              103.245236 100.377966 101.1458880 105.411594
upper95
Ζ
                2.051385 - 1.565173 - 0.6738897
                                                   5.255814
```

What if we "assume" normality and use t?

```
> rbind(ave,lower95,upper95,Z)
```

```
        A
        B
        C
        D

        ave
        101.659583
        98.501667
        99.3995833
        103.941667

        lower95
        100.073931
        96.625368
        97.6532786
        102.471739

        upper95
        103.245236
        100.377966
        101.1458880
        105.411594

        Z
        2.051385
        -1.565173
        -0.6738897
        5.255814

        > attach(Y) # So A, B, C, D are available
        > t.test(A,mu=100)
```

One Sample t-test

```
data: A
t = 2.0514, df = 239, p-value = 0.04132
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
100.0659 103.2533
sample estimates:
mean of x
101.6596
```

Test equality of means

```
> S = var(Y); S
```

 A
 B
 C
 D

 A
 157.0779
 110.77831
 106.56220
 109.6234

 B
 110.7783
 219.93950
 95.66686
 100.3585

 C
 106.5622
 95.66686
 190.51937
 106.2501

 D
 109.6234
 100.35851
 106.25006
 134.9867

 >
 cor(Y)

В C Α D A 1.0000000 0.5959991 0.6159934 0.7528355 B 0.5959991 1.0000000 0.4673480 0.5824479 C 0.6159934 0.4673480 1.0000000 0.6625431 0.7528355 0.5824479 0.6625431 1.0000000 > > L4 = rbind(c(1,-1, 0, 0), c(0, 1, -1, 0),+ c(0, 0, 1, -1)) + > Wtest(L=L4,Tn=ave,Vn=S/n) W df p-value 7.648689e+01 3.000000e+00 2.220446e-16

Pairwise comparisons Where is the effect coming from?

Set it up.

- > testmatrix = diag(1,4,4) # Start with an identity matrix.
- > labelz = colnames(Y)
- > rownames(testmatrix) = labelz; colnames(testmatrix) = labelz

```
> testmatrix
```

Fill the matrix

```
> for(i in 1:3)
      Ł
+
+
      for(j in (i+1):4)
+
          LL = rbind(c(0,0,0,0))
+
           LL[i]=1; LL[j]=-1
+
          print(LL) # Just to check
+
           W = Wtest(L=LL,Tn=ave,Vn=S/n)
+
           testmatrix[i,j] = W[1]; testmatrix[j,i]=W[3]
+
           } # Next j
+
      } # Next i
+
     [,1] [,2] [,3] [,4]
[1,]
       1
           -1
                      0
     [,1] [,2] [,3] [,4]
[1,]
       1
          0
                -1
                      0
     [,1] [,2] [,3] [,4]
[1,]
     1 0 0
                   -1
     [,1] [,2] [,3] [,4]
[1,]
       0
            1
                -1
                      0
     [,1] [,2] [,3] [,4]
[1,]
       0
            1
                 0
                     -1
```

Look at the $\binom{4}{2}$ pairwise comparisons

- > # Test statistics (chisq with 1 df) are in the upper triangle,
- > # p-values in lower
- > round(testmatrix,4)

 A
 B
 C
 D

 A
 1.0000
 15.3954
 9.1158
 17.1647

 B
 0.0001
 1.0000
 0.8831
 46.0573

 C
 0.0025
 0.3474
 1.0000
 43.8147

 D
 0.0000
 0.0000
 1.0000
 1.0000

> ave

A B C D 101.65958 98.50167 99.39958 103.94167

Average reported enjoyment was greatest for Program D, followed by A. The results are consistent with no difference between B and C.

Multiple Comparisons

- Most hypothesis tests are designed to be carried out in isolation.
- But if you do a lot of tests and all the null hypotheses are true, the chance of rejecting at least one of them can be a lot more than α. This is inflation of the Type I error probability.
- Otherwise known as the curse of a thousand t-tests.
- Multiple comparison procedures (sometimes called follow-up tests, post hoc tests, probing) try to offer a solution.

Multiple Comparisons A solution

- Protect a *family* of tests against Type I error at some *joint* significance level α .
- If all the null hypotheses are true, the probability of rejecting at least one is no more than *α*.
- Many methods are available; we'll consider just one for now: Bonferroni.

Bonferroni multiple comparisons

• Based on Bonferroni's inequality:

$$Pr\left\{\bigcup_{j=1}^{k} A_j\right\} \le \sum_{j=1}^{k} Pr\{A_j\}$$

- Applies to any collection of k tests.
- Assume that all k null hypotheses are true.
- Event A_j is that null hypothesis j is rejected.
- Do the tests as usual.
- Adjust the significance level, and reject each H_0 if $p < \alpha/k$.

$$Pr\left\{\bigcup_{j=1}^{k} A_j\right\} \le \sum_{j=1}^{k} Pr\{A_j\} = \sum_{j=1}^{k} \alpha/k = \alpha$$

 Or, adjust the *p*-values. Multiply them by k, and reject if *pk* < α.

TV show example

- A
 B
 C
 D

 A
 1.0000
 15.3954
 9.1158
 17.1647

 B
 0.0001
 1.0000
 0.8831
 46.0573

 C
 0.0025
 0.3474
 1.0000
 43.8147

 D
 0.0000
 0.0000
 1.0000
 1.0000
 - There are $\binom{4}{2} = 6 = k$ tests in the family.
 - Adjusted α is 0.05/6 = 0.0083.
 - Conclusions don't change in this case.
 - What if the family includes comparisons with Program E? Now there are 10 comparisons and H_0 is rejected if $p < \alpha/10 = 0.005$.

Include Z tests for comparison with Program E Adjusted significance level is $\alpha/10 = 0.005$

- > pval = 2*pnorm(-abs(Z))
- > rbind(Z,pval)

 A
 B
 C
 D

 Z
 2.05138485
 -1.5651734
 -0.6738897
 5.255814e+00

 pval
 0.04022948
 0.1175423
 0.5003815
 1.473709e-07

Add to the conclusions: Program D is preferred to E, but E is in a statistical tie with A, B and C.

Advantages and disadvantages Of the Bonferroni method

- Advantage: Flexible Applies to any collection of hypothesis tests.
- Advantage: Easy to do.
- Disadvantage: Must know what all the tests are before seeing the data. So we were cheating.
- Disadvantage: A little conservative; the true joint significance level is less than α .

Practical versus statistical significance boxplot(Y)

Between cases: Independent groups Like a one-factor ANOVA

• Have n cases, separated into p groups: Maybe experimental treatment (say, drug) or occupation of main wage earner in family.

•
$$n_1 + n_2 + \dots + n_p = n$$

- Response variable is either binary or quantity of something, like annual energy consumption.
- No reason to believe normality.
- No reason to believe equal variances.
- $H_0: \mathbf{L}\boldsymbol{\mu} = \mathbf{h}$
- For example, $H_0: \mu_1 = \ldots = \mu_p$
- Or $\mu_2 = \mu_7$

Basic Idea

The p sample means are independent random variables. Asymptotically,

- $\overline{Y}_j \sim N(\mu_j, \frac{\sigma_j^2}{n_j})$
- The $p \times 1$ random vector $\overline{\mathbf{Y}}_n \sim N(\boldsymbol{\mu}, \mathbf{V}_n)$,
- Where \mathbf{V}_n is a $p \times p$ diagonal matrix with *j*th diagonal element $\frac{\sigma_j^2}{n_i}$.
- $\mathbf{L}\overline{\mathbf{Y}}_n \sim N_r(\mathbf{L}\boldsymbol{\mu}, \mathbf{L}\mathbf{V}_n\mathbf{L}^{\top}).$
- Approximate \mathbf{V}_n with the diagonal matrix $\widehat{\mathbf{V}}_n$, *j*th diagonal element $\frac{\widehat{\sigma}_j^2}{n_j}$.
- And if $H_0: \mathbf{L}\boldsymbol{\mu} = \mathbf{h}$ is true, then asymptotically

$$W_n = \left(\mathbf{L}\overline{\mathbf{Y}}_n - \mathbf{h}\right)^\top \left(\mathbf{L}\widehat{\mathbf{V}}_n\mathbf{L}^\top\right)^{-1} \left(\mathbf{L}\overline{\mathbf{Y}}_n - \mathbf{h}\right) \sim \chi^2(r)$$

One little technical issue

- More than one n_j is going to infinity.
- The rates at which they go to infinity can't be too different.
- In particular, if $n = n_1 + n_2 + \dots + n_p$,
- Then each $\frac{n_j}{n}$ must converge to a non-zero constant (in probability).

Loose asymptotic arguments lose this kind of detail.

Compare High School marks for students at 3 campuses

Campus	n	Mean	Standard Deviation
SG	3906	84.94	5.59
UTM	1583	79.68	5.82
UTSC	1849	79.96	5.98

Compute
$$W_n = \left(\mathbf{L}\overline{\mathbf{Y}}_n - \mathbf{h}\right)^{\top} \left(\mathbf{L}\widehat{\mathbf{V}}_n\mathbf{L}^{\top}\right)^{-1} \left(\mathbf{L}\overline{\mathbf{Y}}_n - \mathbf{h}\right)^{\top}$$

 $H_0: \mu_1 = \mu_2 = \mu_3$

Campus	n	Mean	Standard Deviation
SG	3906	84.94	5.59
UTM	1583	79.68	5.82
UTSC	1849	79.96	5.98

> source("http://www.utstat.utoronto.ca/~brunner/Rfunctions/Wtest.txt")

```
> n = c(3906, 1583, 1849)
> ybar = c(84.94,79.68,79.96)
> Vhat = diag(c(5.59,5.82,5.98)^2/n); Vhat
           [,1] [,2]
                               [,3]
[1,] 0.008000026 0.0000000 0.0000000
[2,] 0.00000000 0.0213976 0.0000000
[3,] 0.00000000 0.000000 0.0193404
> L1 = rbind(c(1, -1, 0),
            c(0,1,-1))
+
> Wtest(L1,ybar,Vhat)
     W
           df p-value
1441.58 2.00
                  0.00
```

Test difference between UTM and UTSC

Campus	n	Mean	Standard Deviation
SG	3906	84.94	5.59
UTM	1583	79.68	5.82
UTSC	1849	79.96	5.98

There are two more pairwise comparisons.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf17