
STA 2101/442 Assignment 41

Except for Question 12, the questions on this assignment are practice for the quiz on Friday October
6th, and are not to be handed in. Please do the problems using the formula sheet as necessary. A
copy of the formula sheet will be distributed with the quiz.

1. It’s easy to say “All these dummy variable coding schemes are equivalent,” and the statement
is correct — but exactly what does it mean? Consider the example of a 3-category explanatory
variable with categories labelled A, B and C, and a single quantitative explanatory variable.
This can be extended to cover most cases of interest.

We have seen two ways of setting up the dummy variables; there are plenty more. For
indicator dummy variables with intercept, Y = β0 + β1x1 + β2x2 + β3x3 + ε, where x1 and
x2 are indicators for categories A and B respectively and x3 is the quantitative variable. For
cell means coding, Y = α1w1 + α2w2 + α3w3 + α4x3 + ε, where w1, w2 and w3 are indicators
for categories A, B and C respectively and x3 is the same quantitative explanatory variable.
This notation is a reminder that when the dummy variable coding changes, the meaning of
some parameters will change too.

(a) For each of the two coding schemes, make a table showing how the dummy variables
are set up. There should be one row for each category, and a column for each dummy
variable. Add a another column on the right, showing E(Y |x). I know you have done
this before, but it will help. Put the two tables side by side.

(b) Clearly if you know x1 and x2, you know w1, w2 and w3 – and vice versa2. The same is
true of the regression coefficients. Solve for α1, α2, α3 and α4 in terms of β0, β1, β2 and
β3. Your answer consists of four equations.

(c) Note that the equations are linear, and it would be easy to solve for the β parameters in
terms of the α parameters. Thus the re-parameterization of the vector β into the vector
α is a 1−1 linear transformation. That is, α = Aβ, where the matrix A has an inverse.
Give the 4× 4 matrix A. The answer is a matrix of specific numbers (integers).

(d) For the general linear model y = Xβ + ε, the one-to-one linear re-parameterization
α = Aβ requires a one-to-one linear transformation of the X matrix in order not to
change what the model says:

y = Xβ + ε

= XA−1Aβ + ε

= Wα + ε,

where W = XA−1 and α = Aβ. This is very general, and is not confined to adopting
different dummy variable codings. One can start with a linear transformation of X or
with a linear re-parameterization of β. One requires the other. Finally, here is the
question. Give the 4×4 matrix A−1 for our little dummy variable problem. The answer
is a matrix of specific numbers. I actually used R’s solve function to get it. If you do
it this way, don’t bother to bring that printout.

1This assignment was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It
is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf17

2For the model with an intercept, there is actually another dummy variable x0 that always equals one. Thus there
are 3 dummy variables in each set.
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(e) Give equations for w1, w2 and w3 in terms of x0, x1 and x2. Your answer consists of
three scalar equations. This confirms that switching dummy variable coding is a linear
transformation for this example.

(f) Now we move to a more general setting in which α = Aβ is just a 1-1 linear re-
parameterization and W = XA−1 is the corresponding transformation of the explana-
tory variables.

(g) Write the least-squares estimate α̂ in terms of β̂. Show the calculation. I think it’s
easiest to start with α̂ and substitute.

(h) Call y = Xβ + ε the original model, and y = Wα + ε the re-parameterized model.
Compare the vector of predicted y values ŷ from the re-parameterized model to ŷ from
the original model.

(i) Compare the vector of residuals e from the re-parameterized model to e from the original
model.

(j) Compare the proportion of explained variation R2 from the original and re-parameterized
models.

(k) Consider the null hypothesis H0 : Lβ = h based on the original model. The correspond-
ing (logically equivalent, if and only if) null hypothesis for the re-parameterized model
is H0 : Kα = h. Give a formula for K. Show a little work.

(l) Compare the F statistic for testing H0 : Lβ = h to the F statistic for testing H0 : Kα =
h. Start with the formula for the second one, and then substitute. Show your work. Use
the formula sheet.

The overall story is that (all) these dummy variable schemes are equivalent in the sense that
they lead to the same predictions and the same conclusions.

2. Suppose
√
n(Tn − θ)

d→ T . Show Tn
p→ θ. Please use Slutsky lemmas rather than definitions.

3. Let X1, . . . , Xn be a random sample from a Binomial distribution with parameters 3 and θ.
That is,

P (Xi = xi) =

(
3

xi

)
θxi(1− θ)3−xi ,

for xi = 0, 1, 2, 3. Find the maximum likelihood estimator of θ, and show that it is strongly
consistent.

4. Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; τ) =
τ1/2√

2π
e−

τx2

2 ,

where the parameter τ > 0. Let

τ̂ =
n∑n

i=1X
2
i

.

Is τ̂ a consistent estimator of τ? Answer Yes or No and prove your answer. Hint: You can
just write down E(X2) by inspection. This is a very familiar distribution.

5. Let X1, . . . , Xn be a random sample from a distribution with mean µ. Show that Tn =
1

n+400

∑n
i=1Xi is a strongly consistent estimator of µ.

6. Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ2. Prove

that the sample variance S2 =
∑n
i=1(Xi−X)2

n−1 is a strongly consistent estimator of σ2.
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7. Independently for i = 1, . . . , n, let
Yi = βXi + εi,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2X , V ar(εi) = σ2ε , and εi is independent of Xi. Let

β̂n =

∑n
i=1XiYi∑n
i=1X

2
i

.

Is β̂n a consistent estimator of β? Answer Yes or No and prove your answer.

8. In this problem, you’ll use (without proof) the variance rule, which says that if θ is a real
constant and T1, T2, . . . is a sequence of random variables with

lim
n→∞

E(Tn) = θ and lim
n→∞

V ar(Tn) = 0,

then Tn
P→ θ.

In Problem 7, the independent variables are random. Here they are fixed constants, which is
more standard (though a little strange if you think about it). Accordingly, let

Yi = βxi + εi

for i = 1, . . . , n, where ε1, . . . , εn are a random sample from a distribution with expected value
zero and variance σ2, and β and σ2 are unknown constants.

(a) What is E(Yi)?

(b) What is V ar(Yi)?

(c) Use the same estimator as in Problem 7. Is β̂n unbiased? Answer Yes or No and show
your work.

(d) Suppose that the sequence of constants
∑n

i=1 x
2
i → ∞ as n → ∞. Does this guarantee

β̂n will be consistent? Answer Yes or No. Show your work.

(e) Let β̂2,n = Y n
xn

. Is β̂2,n unbiased? Consistent? Answer Yes or No to each question and
show your work. Do you need a condition on the xi values ?

(f) Prove that β̂n is a more accurate estimator than β̂2,n in the sense that it has smaller
variance. Hint: The sample variance of the explanatory variable values cannot be nega-
tive.

9. Let X be a random variable with expected value µ and variance σ2. Show X
n

p→ 0.

10. Let X1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0. That
is, the density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ a consistent estimator of θ? Answer Yes or No and prove your
answer.
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11. The ordinary univariate Central Limit Theorem says that if X1, . . . , Xn are a random sample
(independent and identically distributed) from a distribution with expected value µ and
variance σ2, then

Z(1)
n =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1).

An application of some Slutsky theorems (see lecture slides) shows that also,

Z(2)
n =

√
n(Xn − µ)

σ̂n

d→ Z ∼ N(0, 1),

where σ̂n is any consistent estimator of σ. For this problem, suppose that X1, . . . , Xn are
Bernoulli(θ).

(a) What is µ?

(b) What is σ2?

(c) Re-write Z
(1)
n for the Bernoulli exanple.

(d) What about Zn =
√
n(Xn−θ)√
Xn(1−Xn)

? Does Zn converge in distribution to a standard normal?

Why or why not?

(e) What about the t statistic Tn =
√
n(Xn−µ)
Sn

, where Sn is the sample standard deviation?
Does Tn converge in distribution to a standard normal? Why or why not?

12. Here is an integral you cannot do in closed form, and numerical integration is challenging.
For example, R’s integrate function fails.

∫ 1/2

0
ecos(1/x) dx

Using R, approximate the integral with Monte Carlo integration, and give a 99% confidence
interval for your answer. You need to produce 3 numbers: the estimate, a lower confidence
limit and an upper confidence limit. Please bring your printout to the quiz.
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