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Overview

1 Omitted Variables

2 Instrumental Variables
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A Practical Data Analysis Problem

When more explanatory variables are added to a regression
model and these additional explanatory variables are correlated
with explanatory variables already in the model (as they
usually are in an observational study),

Statistical significance can appear when it was not present
originally.

Statistical significance that was originally present can
disappear.

Even the signs of the β̂s can change, reversing the
interpretation of how their variables are related to the
response variable.
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An extreme, artificial example
To make a point

Suppose that in a certain population, the correlation between
age and strength is r = −0.93.
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The fixed x regression model

Yi = β0 + β1xi,1 + · · ·+ βkxi,p−1 + εi, with εi ∼ N(0, σ2)

If viewed as conditional on Xi = xi, this model implies
independence of εi and Xi, because the conditional
distribution of εi given Xi = xi does not depend on xi.

What is εi? Everything else that affects Yi.

So the usual model says that if the explanatory varables are
random, they have zero covariance with all other variables
that are related to Yi, but are not included in the model.

For observational data, this assumption is almost always
violated.

Does it matter?
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Example
The explanatory variables are random.

Suppose that the variables X2 and X3 affect Y and are
correlated with X1, but they are not part of the data set. The
values of the response variable are generated as follows:

Yi = β0 + β1Xi,1 + β2Xi,2 + β2Xi,3 + εi,

independently for i = 1, . . . , n, where εi ∼ N(0, σ2). The
explanatory variables are random, with expected value and
variance-covariance matrix

E

 Xi,1

Xi,2

Xi,3

 =

 µ1
µ2
µ3

 and V

 Xi,1

Xi,2

Xi,3

 =

 φ11 φ12 φ13
φ22 φ23

φ33

 ,

where εi is independent of Xi,1, Xi,2 and Xi,3.
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Absorb X2 and X3

Since X2 and X3 are not observed, they are absorbed by the intercept
and error term.

Yi = β0 + β1Xi,1 + β2Xi,2 + β2Xi,3 + εi

= (β0 + β2µ2 + β3µ3) + β1Xi,1 + (β2Xi,2 + β3Xi,3 − β2µ2 − β3µ3 + εi)

= β′0 + β1Xi,1 + ε′i.

And,
Cov(Xi,1, ε

′
i) = β2φ12 + β3φ13 6= 0
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The “True” Model
Almost always closer to the truth than the usual model, for observational data

Yi = β0 + β1Xi + εi,

where E(Xi) = µx, V ar(Xi) = σ2x, E(εi) = 0, V ar(εi) = σ2ε , and
Cov(Xi, εi) = c.

Under this model,

σxy = Cov(Xi, Yi) = Cov(Xi, β0 + β1Xi + εi) = β1σ
2
x + c
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Estimate β1 as usual with least squares

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=
1
n

∑n
i=1(Xi −X)(Yi − Y )
1
n

∑n
i=1(Xi −X)2

=
σ̂xy
σ̂2x

a.s.→ σxy
σ2x

=
β1σ

2
x + c

σ2x

= β1 +
c

σ2x
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β̂1
a.s.→ β1 + c

σ2
x

It converges to the wrong thing.

β̂1 is inconsistent.

For large samples it could be almost anything, depending
on the value of c, the covariance between Xi and εi.

Small sample estimates could be accurate, but only by
chance.

The only time β̂1 behaves properly is when c = 0.

Test H0 : β1 = 0: Probability of Type I error goes almost
surely to one.
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All this applies to multiple regression
Of course

When a regression model fails to include all the explanatory
variables that contribute to the response variable, and those
omitted explanatory variables have non-zero covariance with
variables that are in the model, the regression coefficients are
inconsistent. Estimation and inference are almost guaranteed to
be misleading, especially for large samples.
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Correlation-Causation

The problem of omitted variables is the technical version of
the correlation-causation issue.

The omitted variables are “confounding” variables.

With random assignment and good procedure, x and ε
have zero covariance.

But random assignment is not always possible.

Most applications of regression to observational data
provide very poor information about the regression
coefficients.

Is bad information better than no information at all?
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How about another estimation method?
Other than ordinary least squares

Can any other method be successful?

This is a very practical question, because almost all
regressions with observational data have the disease.

13 / 30



Omitted Variables Instrumental Variables

For simplicity, assume normality
Yi = β0 + β1Xi + εi

Assume (Xi, εi) are bivariate normal.

This makes (Xi, Yi) bivariate normal.

(X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ N2(m,V), where

m =

(
m1

m2

)
=

(
µx

β0 + β1µx

)
and

V =

(
v11 v12

v22

)
=

(
σ2x β1σ

2
x + c

β21σ
2
x + 2β1c+ σ2ε

)
.

All you can ever learn from the data are the approximate
values of m and V.

Even if you knew m and V exactly, could you know β1?
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Five equations in six unknowns

The parameter is θ = (µx, σ
2
x, σ

2
ε , c, β0, β1). The distribution of

the data is determined by

(
m1

m2

)
=

(
µx

β0 + β1µx

)
and

(
v11 v12

v22

)
=

(
σ2
x β1σ

2
x + c

β2
1σ

2
x + 2β1c+ σ2

ε

)

µx = m1 and σ2x = v11.

The remaining 3 equations in 4 unknowns have infinitely
many solutions.

So infinitely many sets of parameter values yield the same
distribution of the sample data.

This is serious trouble – lack of parameter identifiability.

Definition: If a parameter is a function of the distribution
of the observable data, it is said to be identifiable.
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Skipping the High School algebra
θ = (µx, σ

2
x, σ

2
ε , c, β0, β1)

For any given m and V, all the points in a one-dimensional
subset of the 6-dimensional parameter space yield m and
V, and hence the same distribution of the sample data.

In that subset, values of β1 range from −∞ to −∞, so m
and V could have been produced by any value of β1.

There is no way to distinguish between the possible values
of β1 based on sample data.

The problem is fatal, if all you can observe is a single X
and a single Y .
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Details for the record
θ = (µx, σ

2
x, σ

2
ε , c, β0, β1)

For any given m and V, all the points in a one-dimensional
subset of the 6-dimensional parameter space yield m and V,
and hence the same distribution of the sample data.

µx = m1 and σ2x = v11 remain fixed.

σ2ε ≥ |V|/v11
When σ2ε = |V|/v11, β1 = v12/v11

For σ2ε > |V|/v11, two values of β1 are compatible with m
and V.

As σ2ε increases, the lower β1 goes to −∞ and the upper β1
goes to −∞.

β0 and c are linear functions of β1:

β0 = m2 − β1m1

c = v12 − β1v11
This set of parameter values is geometrically interesting.
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Instrumental Variables (Wright, 1928)
A partial solution

An instrumental variable is a variable that is correlated
with an explanatory variable, but is not correlated with
any error terms and has no direct effect on the response
variable.

Usually, the instrumental variable influences the
explanatory variable.

An instrumental variable is often not the main focus of
attention; it’s just a tool.
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A Simple Example

What is the contribution of income to credit card debt?

Yi = β0 + β1Xi + εi,

where E(Xi) = µx, V ar(Xi) = σ2x, E(εi) = 0, V ar(εi) = σ2ε , and
Cov(Xi, εi) = c.
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A path diagram

Yi = α+ βXi + εi,

where E(Xi) = µ, V ar(Xi) = σ2x, E(εi) = 0, V ar(εi) = σ2ε , and
Cov(Xi, εi) = c.

X

Yε

βc

Least squares estimate of β is inconsistent, and so is every other
possible estimate. If the data are normal.
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Add an instrumental variable
X is income, Y is credit card debt.

Focus the study on real estate agents in many cities. Include
median price of resale home Wi.

Xi = α1 + β1Wi + εi1

Yi = α2 + β2Xi + εi2

X

Yε
2

β

c

ε
1

β
1 W

β
2

Main interest is in β2.
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Base estimation and inference on the covariance matrix
of (Wi, Xi, Yi): Call it V = [vij ]

Based on Xi = α1 + β1Wi + εi1 and Yi = α2 + β2Xi + εi2,

V =

W X Y

W σ2w β1σ
2
w β1β2σ

2
w

X β21σ
2
w + σ21 β2(β

2
1σ

2
w + σ21) + c

Y β21β
2
2σ

2
w + β22σ

2
1 + 2β2c+ σ22

β2 =
v13
v12

And all the other parameters are identifiable too.
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But of course there is measurement error

W is housing prices, T is true income, X is reported income,
Y is credit card debt.

X Y

ε
3

β

c

ε
2

β
1

W

β
3

T ε
1

β
2

Main interest is in β3. 23 / 30
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Read the model equations from the path diagram

X Y

ε
3

β

c

ε
2

β
1

W

β
3

T ε
1

β
2

Ti = α1 + β1Wi + εi,1

Xi = α2 + β2Ti + εi,2

Yi = α3 + β3Ti + εi,3

24 / 30



Omitted Variables Instrumental Variables

Covariance matrix
W is housing price, X is reported income, Y is credit card debt.

Main interest is in β3, which links true income to credit card
debt.

w x y σ2w β1β2σ
2
w β1β3σ

2
w

β1β2σ
2
w β21β

2
2σ

2
w + β22σ11 + σ22 β21β2β3σ

2
w + β2β3σ11 + c

β1β3σ
2
w β21β2β3σ

2
w + β2β3σ11 + c β21β

2
3σ

2
w + β23σ11 + σ33



β1 is the link between housing price and true income. It
should be positive.

So we can tell whether β3 is positive, negative or zero.

H0 : v13 = 0 is equivalent to H0 : β3 = 0.

Confidence interval?
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We can do better
W is housing prices, T is true income, X is reported income, Y is credit card debt.

Here’s the model again.

X Y

ε
3

β

c

ε
2

β
1

W

β
3

T ε
1

β
2

Credit card debt is measured with error.
True income and credit card debt have other common
influences, so their error terms should be correlated.
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A better model
W is housing prices, X is reported income, Y is credit card debt.

X Y

ε
3

βc

ε
4

β
1

W

β
3

Tx

ε
1

β
2

Ty
β
3

β
4

ε
2

ε
1

cov(ε) = [σij ]. Main interest is in β3. 27 / 30
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Covariance matrix of (Wi, Xi, Yi)
W is housing price, X is reported income, Y is credit card debt.

Main interest is in β3, which links true income to true credit
card debt.

w x y

w σ2w β1β2σ
2
w β1β3β4σ

2
w

x
β21β

2
2σ

2
w +β22σ11 +

2β2σ14 + σ44

β21β2β3β4σ
2
w+β2β3β4σ11+β2β4σ12+

β3β4σ14 + β2σ13 + β4σ24 + σ34

y
β21β

2
3β

2
4σ

2
w + β23β

2
4σ11 + 2β3β

2
4σ12 +

2β3β4σ13 + β24σ22 + 2β4σ23 + σ33

β1 and β4 should be positive.
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Comments

Instrumental variables help with measurement error as well
as with omitted variables.

If there is measurement error, regression coefficients of
interest are not identifiable and cannot be estimated
consistently, but their signs can.

Good instrumental variables are not easy to find.

They will not just happen to be in the data set, except by
a miracle.

They really have to come from another universe, but still
have a strong and clear effect.

Wright’s original example was tax policy for cooking oil.

Time series applications are common.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf16
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