Breaking Rocks ${ }^{1}$

> rock =
read.table("http://www.utstat.toronto.edu/~brunner/302f13/code_n_data/lectu re/rock1.data")
> attach(rock)
> plot(support,bforce)
> title("Breaking strength of rock cores")

Breaking strength of rock cores

1 This is a free open source document. Copyright information is on the last page.

```
> # Plot least squares curve
> sqrtsup = sqrt(support)
> sqrtmodel = lm(bforce~sqrtsup)
> lines(support,sqrtmodel$fitted.values,type='l')
```


Breaking strength of rock cores

$$
>
$$

> \# Look at residuals
> sdr = rstudent(sqrtmodel)
> plot(sqrtsup,sdr,xlab='Square root of Support Force',

+ ylab='Studentized Deleted Residual')
> title('Residual Plot')

Residual Plot

Square root of Support Force
$>$
> \# Outlier check
> \# Bonferroni critical value for n tests, at joint alpha $=0.05$ level
> $\mathrm{n}=$ length(support); n

[1] 205

> dfe = sqrtmodel\$df.residual
> alpha = 0.05; alphab = alpha/n; bcrit = qt(1-alphab/2,dfe-1); bcrit

[1] 3.73529

> c(min(sdr), max(sdr))
[1] -3.343361 3.445386

```
>
> # Prediction interval for a new core with support=9
> newcore = data.frame(sqrtsup=3)
> predict(sqrtmodel,newdata=newcore,interval='prediction')
    fit lwr upr
1 10.687 10.20577 11.16824
>
> # Maybe variance is proportional to square root of support
> # Support of zero looks funny in the residual plot anyway
> summary(sqrtmodel) # For comparison
Call:
lm(formula = bforce ~ sqrtsup)
Residuals:
    Min 1Q Median 3Q Max
-0.78656 -0.12770-0.00942 0.14268 0.81092
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.93806 0.04814 164.89 <2e-16
sqrtsup 0.91631 0.02153 42.56 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2427 on 203 degrees of freedom
Multiple R-squared: 0.8992, Adjusted R-squared: 0.8987
F-statistic: }1811\mathrm{ on 1 and 203 DF, p-value: < 2.2e-16
> SqrtSupport=sqrtsup; SqrtSupport[SqrtSupport==0] = NA
> lm(bforce~SqrtSupport)
Call:
lm(formula = bforce ~ SqrtSupport)
Coefficients:
(Intercept) SqrtSupport
    7.9356 0.9174
```

```
> wmodel = lm(bforce~SqrtSupport,weights=1/SqrtSupport); summary(wmodel)
```

Call:
$\operatorname{lm}($ formula $=$ bforce \sim SqrtSupport, weights $=1$ SqrtSupport)
Weighted Residuals:
Min 1Q Median 3Q Max
-0.49824-0.09209 -0.00684 0.10290 0.48119

Coefficients:

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	7.93181	0.03622	218.96	$<2 \mathrm{e}-16^{* * *}$
SqrtSupport	0.91911	0.01856	49.51	$<2 \mathrm{e}-16^{* * *}$

Signif. codes: 0 ‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.' 0.1 ' ' 1
Residual standard error: 0.1597 on 198 degrees of freedom (5 observations deleted due to missingness)
Multiple R-squared: 0.9253, Adjusted R-squared: 0.9249 F-statistic: 2451 on 1 and 198 DF, p-value: < 2.2e-16
$>$
> \# Look at residuals from the WLS analysis
> wsdr = rstudent(wmodel); wsdr[support==0] = NA
> plot(SqrtSupport,wsdr,xlab='Square root of Support Force',

+ ylab='Studentized Deleted Residual')
> title('Residual Plot for Weighted Least Squares')

Residual Plot for Weighted Least Squares

> newcore2 = data.frame(SqrtSupport=3)
> \# Need to supply weights to predict
> predict(wmodel, newdata=newcore2, interval='prediction', weights=1/3)
fit lwr upr
110.6891410 .1408911 .23739
> predict(sqrtmodel, newdata=newcore, interval='prediction') \# For comparison
fit lwr upr
110.68710 .2057711 .16824

This handout was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The OpenOffice.org document is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/appliedf16

