STA 2101/442 Assignment Three¹

The questions are just practice for the quiz, and are not to be handed in. Use R as necessary for Question 18, and bring your printout to the quiz.

- 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density $f_X(x)$ and cumulative distribution function $F_X(x)$. Suppose the cumulative distribution function is strictly increasing over the set of x values where $0 < F_X(x) < 1$, so that $F_X(x)$ has an inverse. Let U have a uniform distribution over the interval (0, 1). Show that the random variable $Y = F_X^{-1}(U)$ has the same distribution as X. Hint: You will need an expression for $F_U(u) = Pr\{U \le u\}$, where $0 \le u \le 1$.
- 2. Let X_1, \ldots, X_n be a random sample from a Binomial distribution with parameters 3 and θ . That is,

$$P(X_i = x_i) = \binom{3}{x_i} \theta^{x_i} (1-\theta)^{3-x_i},$$

for $x_i = 0, 1, 2, 3$. Find the maximum likelihood estimator of θ , and show that it is strongly consistent.

3. Let X_1, \ldots, X_n be a random sample from a continuous distribution with density

$$f(x;\tau) = \frac{\tau^{1/2}}{\sqrt{2\pi}} e^{-\frac{\tau x^2}{2}},$$

where the parameter $\tau > 0$. Let

$$\widehat{\tau} = \frac{n}{\sum_{i=1}^{n} X_i^2}$$

Is $\hat{\tau}$ a consistent estimator of τ ? Answer Yes or No and prove your answer. Hint: You can just write down $E(X^2)$ by inspection. This is a very familiar distribution.

- 4. Let X_1, \ldots, X_n be a random sample from a distribution with mean μ . Show that $T_n = \frac{1}{n+400} \sum_{i=1}^n X_i$ is a strongly consistent estimator of μ .
- 5. Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Prove that the sample variance $S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$ is a strongly consistent estimator of σ^2 .
- 6. Independently for $i = 1, \ldots, n$, let

$$Y_i = \beta X_i + \epsilon_i,$$

¹Copyright information is at the end of the last page.

where $E(X_i) = E(\epsilon_i) = 0$, $Var(X_i) = \sigma_X^2$, $Var(\epsilon_i) = \sigma_\epsilon^2$, and ϵ_i is independent of X_i . Let

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}.$$

Is $\hat{\beta}$ a consistent estimator of β ? Answer Yes or No and prove your answer.

7. In this problem, you'll use (without proof) the variance rule, which says that if θ is a real constant and T_1, T_2, \ldots is a sequence of random variables with

$$\lim_{n \to \infty} E(T_n) = \theta \text{ and } \lim_{n \to \infty} Var(T_n) = 0,$$

then $T_n \xrightarrow{P} \theta$.

In Problem 6, the independent variables are random. Here they are fixed constants, which is more standard (though a little strange if you think about it). Accordingly, let

$$Y_i = \beta x_i + \epsilon_i$$

for i = 1, ..., n, where $\epsilon_1, ..., \epsilon_n$ are a random sample from a distribution with expected value zero and variance σ^2 , and β and σ^2 are unknown constants.

- (a) What is $E(Y_i)$?
- (b) What is $Var(Y_i)$?
- (c) Find the Least Squares estimate of β by minimizing $Q = \sum_{i=1}^{n} (Y_i \beta x_i)^2$ over all values of β . Let $\hat{\beta}_n$ denote the point at which Q is minimal.
- (d) Is $\widehat{\beta}_n$ unbiased? Answer Yes or No and show your work.
- (e) Give a nice simple condition on the x_i values that guarantees $\hat{\beta}_n$ will be consistent. Show your work. Remember, in this model the x_i are fixed constants, not random variables.
- (f) Let $\widehat{\beta}_{2,n} = \frac{\overline{Y}_n}{\overline{x}_n}$. Is $\widehat{\beta}_{2,n}$ unbiased? Consistent? Answer Yes or No to each question and show your work. Do you need a condition on the x_i values ?
- (g) Prove that $\widehat{\beta}_n$ is a more accurate estimator than $\widehat{\beta}_{2,n}$ in the sense that it has smaller variance. Hint: The sample variance of the independent variable values cannot be negative.
- 8. Let X_1, \ldots, X_n be a random sample from a Gamma distribution with $\alpha = \beta = \theta > 0$. That is, the density is

$$f(x;\theta) = \frac{1}{\theta^{\theta}\Gamma(\theta)}e^{-x/\theta}x^{\theta-1}$$

for x > 0. Let $\hat{\theta} = \overline{X}_n$. Is $\hat{\theta}$ a consistent estimator of θ ? Answer Yes or No and prove your answer.

9. The ordinary univariate Central Limit Theorem says that if X_1, \ldots, X_n are a random sample (independent and identically distributed) from a distribution with expected value μ and variance σ^2 , then

$$Z_n^{(1)} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{d}{\to} Z \sim N(0, 1).$$

An application of some Slutsky theorems (see lecture slides) shows that also,

$$Z_n^{(2)} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\widehat{\sigma}_n} \stackrel{d}{\to} Z \sim N(0, 1),$$

where $\hat{\sigma}_n$ is any consistent estimator of σ . For this problem, suppose that X_1, \ldots, X_n are Bernoulli(θ).

- (a) What is μ ?
- (b) What is σ^2 ?
- (c) Re-write $Z_n^{(1)}$ for the Bernoulli example.
- (d) What about $Z_n = \frac{\sqrt{n}(\overline{X}_n \theta)}{\sqrt{\overline{X}_n(1 \overline{X}_n)}}$? Does Z_n converge in distribution to a standard normal? Why or why not?
- (e) What about the t statistic $T_n = \frac{\sqrt{n}(\overline{X}_n \mu)}{S_n}$, where S_n is the sample standard deviation? Does T_n converge in distribution to a standard normal? Why or why not?
- 10. If the $p \times 1$ random vector **X** has variance-covariance matrix Σ and **A** is an $m \times p$ matrix of constants, prove that the variance-covariance matrix of **AX** is **A** Σ **A**'. Start with the definition of a variance-covariance matrix:

$$V(\mathbf{Z}) = E(\mathbf{Z} - \boldsymbol{\mu}_z)(\mathbf{Z} - \boldsymbol{\mu}_z)'.$$

- 11. If the $p \times 1$ random vector **X** has mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, show $\boldsymbol{\Sigma} = E(\mathbf{X}\mathbf{X}') \boldsymbol{\mu}\boldsymbol{\mu}'$.
- 12. Let the $p \times 1$ random vector **X** have mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, and let **c** be a $p \times 1$ vector of constants. Find $V(\mathbf{X} + \mathbf{c})$. Show your work.
- 13. Let **X** be a $p \times 1$ random vector with mean $\boldsymbol{\mu}_x$ and variance-covariance matrix $\boldsymbol{\Sigma}_x$, and let **Y** be a $q \times 1$ random vector with mean $\boldsymbol{\mu}_y$ and variance-covariance matrix $\boldsymbol{\Sigma}_y$. Recall that $C(\mathbf{X}, \mathbf{Y})$ is the $p \times q$ matrix $C(\mathbf{X}, \mathbf{Y}) = E\left((\mathbf{X} - \boldsymbol{\mu}_x)(\mathbf{Y} - \boldsymbol{\mu}_y)'\right)$.
 - (a) What is the (i, j) element of $C(\mathbf{X}, \mathbf{Y})$?
 - (b) For this item, p = q. Find an expression for $V(\mathbf{X} + \mathbf{Y})$ in terms of Σ_x , Σ_y and $C(\mathbf{X}, \mathbf{Y})$. Show your work.

- (c) Simplify further for the special case where $Cov(X_i, Y_i) = 0$ for all i and j.
- (d) Let **c** be a $p \times 1$ vector of constants and **d** be a $q \times 1$ vector of constants. Find $C(\mathbf{X} + \mathbf{c}, \mathbf{Y} + \mathbf{d})$. Show your work.
- 14. Denote the moment-generating function of a random variable Y by $M_Y(t)$. The moment-generating function is defined by $M_Y(t) = E(e^{Yt})$. Recall that the moment-generating function corresponds uniquely to the probability distribution.
 - (a) Let a be a constant. Prove that $M_{aX}(t) = M_X(at)$.
 - (b) Prove that $M_{X+a}(t) = e^{at}M_X(t)$.
 - (c) Let X_1 and X_2 be *independent* random variables. Prove that

$$M_{X_1+X_2}(t) = M_{X_1}(t) M_{X_1}(t).$$

For convenience, you may assume that X_1 and X_2 are continuous, so you will integrate. This result extends to $M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$, but you don't have to show it. (You could use induction.)

- 15. Recall that if $X \sim N(\mu, \sigma^2)$, it has moment-generating function $M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.
 - (a) Let $X \sim N(\mu, \sigma^2)$ and Y = aX + b, where a and b are constants. Find the distribution of Y. Show your work.
 - (b) Let $X \sim N(\mu, \sigma^2)$ and $Z = \frac{X-\mu}{\sigma}$. Find the distribution of Z.
 - (c) Let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Find the distribution of $Y = \sum_{i=1}^n X_i$.
 - (d) Let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Find the distribution of the sample mean \overline{X} .
 - (e) Let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Find the distribution of $Z = \frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}$.
- 16. A Chi-squared random variable X with parameter $\nu > 0$ has moment-generating function $M_X(t) = (1 2t)^{-\nu/2}$.
 - (a) Let X_1, \ldots, X_n be independent random variables with $X_i \sim \chi^2(\nu_i)$ for $i = 1, \ldots, n$. Find the distribution of $Y = \sum_{i=1}^n X_i$.
 - (b) Let $Z \sim N(0,1)$. Find the distribution of $Y = Z^2$. For this one, you need to integrate. Recall that the density of a normal random variable is $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
 - (c) Let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Find the distribution of $Y = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i \mu)^2$.
 - (d) Let $Y = X_1 + X_2$, where X_1 and X_2 are independent, $X_1 \sim \chi^2(\nu_1)$ and $Y \sim \chi^2(\nu_1 + \nu_2)$, where ν_1 and ν_2 are both positive. Show $X_2 \sim \chi^2(\nu_2)$.

(e) Let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Show

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

where $S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$. Hint: $\sum_{i=1}^n (X_i - \mu)^2 = \sum_{i=1}^n (X_i - \overline{X} + \overline{X} - \mu)^2 = \dots$

You may use the independence of \overline{X} and S^2 without proof, for now.

17. Recall the definition of the t distribution. If $Z \sim N(0, 1)$, $W \sim \chi^2(\nu)$ and Z and W are independent, then $T = \frac{Z}{\sqrt{W/\nu}}$ is said to have a t distribution with ν degrees of freedom, and we write $T \sim t(\nu)$.

As in the last question, let X_1, \ldots, X_n be random sample from a $N(\mu, \sigma^2)$ distribution. Show that $T = \frac{\sqrt{n}(\overline{X}-\mu)}{S} \sim t(n-1)$. Once again, you may use the independence of \overline{X} and S^2 without proof for now.

18. Here is an integral you cannot do in closed form, and numerical integration is challenging. For example, R's integrate function fails.

$$\int_0^{1/2} e^{\cos(1/x)} \, dx$$

Using R, approximate the integral with Monte Carlo integration, and give a 99% confidence interval for your answer. You need to produce 3 numbers: the estimate, a lower confidence limit and an upper confidence limit.

This assignment was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf16