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1See last slide for copyright information.
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The Vent damper data
Based on a Minitab data set, but all the numbers are different

When a furnace is off, the chimney does not need to be open.
Maybe, closing it can conserve energy. A vent damper is a kind
of barrier that closes the chimney. Dampers on fireplaces are
manual, but in modern heating systems they are automatic.
Automatic vent dampers can be either electrical or thermal.
Which kind saves more energy?
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Vent damper continued

Forty houses were randomly assigned to have electrical vent
dampers installed, and 50 were randomly assigned to have
thermal vent dampers. Average daily energy consumption was
measured during two consecutive weeks in the winter. For one
week the vent damper was active (turned on), and the other
week it was inactive (turned off). Within damper type, equal
numbers of houses were randomly assigned to have the damper
on during the first week and the second week.

The cases are houses. The three variables in the file are energy
consumption with vent damper active, energy consumption
with vent damper inactive, and type of damper. The first
question is whether it’s true that energy consumption is less
when the damper is active. For this analysis, we will ignore
whether the vent damper is electrical or thermal.
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The main question (for now)

Does the vent damper affect energy consumption, and if so, by
how much?

Let’s do a t-test.

It’s natural to calculate a difference in energy consumption
for each house, and test whether the mean difference equals
zero.

Or, we could do a two-sample t-test with n1 = n2.

Which one is better?

A test implies a model; compare the models.
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Model for the matched t-test

Independently for i = 1, . . . , n, observe (Xi, Yi).

Xi ∼ N(µ1, σ
2
1), Yi ∼ N(µ2, σ

2
2).

Cov(Xi, Yi) = σ12.

Calculate Differences Di = Xi − Yi
Matched t-test on D1, . . . , Dn

H0 : µ = 0, where µ = E(Di) = µ1 − µ2

Test statistic is

T1 =

√
n(D − 0)

S

with df = n− 1.
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Independent t-test
Correct if σ2

1 = σ2
2 and σ12 = 0

T2 =
X − Y

Sp

√
1
n1

+ 1
n2

,

with df = n1 + n2 − 2, where

S2
p =

∑n1
i=1(Xi −X)2 +

∑n2
i=1(Yi − Y )2

n1 + n2 − 2
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Comparing the Tests

T1 =

√
n(D − 0)

S
, df = n− 1

T2 =
X − Y

Sp

√
1
n1

+ 1
n2

, df = 2(n− 1)

The two-sample test pretends it has twice the degrees of
freedom.

Could cause worry about inflated Type I error rate

But both critical values go to zα/2 as n→∞.

For example, for n = 100, t0.975(99) = 1.98 while
t0.975(198) = 1.97.

So if there is a problem with df , it will be for small samples.
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Comparing the Test Statistics

T1 =
(D − 0)

S/
√
n
, df = n− 1

T2 =
X − Y

Sp

√
1
n1

+ 1
n2

, df = 2(n− 1)

D = 1
n

∑n
i=1(Xi − Yi) = X − Y

So the numerators are the same.

Compare denominators
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One-Sample (Matched) t-Test

S2/n =
1

n(n− 1)

n∑
i=1

(Di −D)2

=
1

n(n− 1)

n∑
i=1

(
Xi − Yi − (X − Y )

)2
=

1

n(n− 1)

n∑
i=1

(
(Xi −X)− (Yi − Y )

)2
=

1

n

[∑n
i=1(Xi −X)2

n− 1
− 2

∑n
i=1(Xi −X)(Yi − Y )

n− 1

+

∑n
i=1(Yi − Y )2

n− 1

]
=

1

n

[
S2
x − 2Sxy + S2

y

]
where Sxy is the sample covariance.
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Two-Sample (Independent) t-Test
With n1 = n2 = n

S2
p

(
1

n1
+

1

n2

)
=

(n1 − 1)S2
x + (n2 − 1)S2

y

n1 + n2 − 2

(
1

n1
+

1

n2

)
=

(n− 1)(S2
x + S2

y)

n+ n− 2

(
2

n

)
=

(n− 1)(S2
x + S2

y)

2(n− 1)

(
2

n

)
=

S2
x + S2

y

n
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Comparing (Squared) Denominators

S2
p

(
1

n1
+

1

n2

)
=

1

n

[
S2
x + S2

y

]
S2/n =

1

n

[
S2
x − 2Sxy + S2

y

]
If covariance is zero, they are the same.

If covariance is negative

Denominator of two-sample t is too small.
Value of t too large.
Null hypothesis rejected too often.

If covariance is positive

Denominator of two-sample t is too large.
Value of t too small.
Null hypothesis less likely to be rejected.
If H0 is false, expect loss of power.
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Covariance should be positive: Why?
A more detailed model

Independently for i = 1, . . . , n, observe (Xi, Yi) where

Xi = δ + Zi + εi1

Yi = Zi + εi2

Xi is the measurement with vent damper active.

δ is the effect of having the vent damper active.

Zi reflects characteristics of the individual house (surface
area, insulation, habits of the occupants, etc.).
Zi ∼ N(µz, σ

2
z).

εij reflects other influences not specific to the house
(measurement error, weather etc.). εij ∼ N(0, σj) for
j = 1, 2.

Zi and εij all independent.
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Covariance is positive
And could be quite large

Xi = δ + Zi + εi1

Yi = Zi + εi2

Cov(Xi, Yi) = V ar(Zi)

Notice Zi cancels in Di = Xi − Yi.
A lot of extraneous variance is removed.

Each house serves as its own control.

And δ = µ1 − µ2.
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Read the data

> furnace = read.table("http://www.utstat.utoronto.ca/~brunner/

appliedf14/code_n_data/lecture/damper.data")

# URL is all on one line

> head(furnace)

damper active inactive

1 EVD 10.71 11.46

2 EVD 7.45 7.91

3 EVD 9.25 10.48

4 EVD 15.91 16.97

5 EVD 7.47 7.88

6 EVD 7.29 7.75

Type furnace to look at the whole data set.
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Summary of Difference score

> attach(furnace) # Make variable names available

> diff = active-inactive; summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.9800 -1.0550 -0.7100 -0.7747 -0.4175 0.8700
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Histogram of Difference score

> hist(diff)
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Check the number

> sort(diff) # Looks like just one possible outlier

[1] -3.98 -2.29 -1.95 -1.94 -1.59 -1.57 -1.54 -1.53 -1.53 -1.52 -1.38 -1.34 -1.32 -1.23 -1.19 -1.18 -1.17

[18] -1.11 -1.11 -1.10 -1.09 -1.09 -1.06 -1.04 -1.03 -1.01 -0.99 -0.98 -0.97 -0.91 -0.90 -0.89 -0.89 -0.85

[35] -0.83 -0.81 -0.80 -0.80 -0.79 -0.75 -0.75 -0.74 -0.73 -0.72 -0.72 -0.70 -0.70 -0.68 -0.68 -0.67 -0.67

[52] -0.67 -0.66 -0.62 -0.61 -0.60 -0.59 -0.58 -0.57 -0.56 -0.49 -0.47 -0.47 -0.46 -0.46 -0.46 -0.44 -0.41

[69] -0.41 -0.38 -0.37 -0.37 -0.37 -0.32 -0.30 -0.30 -0.29 -0.27 -0.26 -0.23 -0.23 -0.21 -0.18 -0.15 -0.11

[86] 0.17 0.25 0.29 0.38 0.87

> (1:90)[diff==min(diff)]

[1] 90

It’s House number 90.
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How unusual is that observation?
Standardize

If Di are normal, Zi = Di−D
Sd

are approximately standard
normal

> Z = (diff-mean(diff))/sd(diff); sort(Z)[1:5]

[1] -5.177325 -2.447600 -1.898424 -1.882272 -1.316944

Z = −5.177 is really unusual. Homework: What’s the
probability of getting one or more this big in absolute value for
n = 90 independent standard normal data?
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Does it look like an outlier in two dimensions?

> plot(inactive,active)
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What is unusual about House Number 90?

Looking in the Minitab handbook, find nothing remarkable
about that house on any of about 10 variables.

In a real data analysis job, look harder.

I don’t want to throw it out unless I know why it’s different.

Do the analyses with and without this house. If the
conclusions are similar, we are happy.
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Matched t-test with the full data set

> t.test(diff) # Matched t

One Sample t-test

data: diff

t = -11.8705, df = 89, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.9043367 -0.6449966

sample estimates:

mean of x

-0.7746667

Conclusion: Use of the vent damper reduces average energy consumption.
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Two-sample t-test with the full data set

> t.test(active,inactive,var.equal = T) # Two-sample (independent) t

Two Sample t-test

data: active and inactive

t = -1.7437, df = 178, p-value = 0.08294

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.6513757 0.1020424

sample estimates:

mean of x mean of y

10.70844 11.48311

Conclusion: These results are consistent with no effect of vent damper.
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Matched t-test with outlier deleted
Including outlier, had t = −11.8705

> activeDel = active[-90] # Could have said active[1:89]

> inactiveDel = inactive[-90] # Can give it a list, like active[-c(1,2,3,90)]

> # But watch out for missing values!

> diffDel = activeDel-inactiveDel

> t.test(diffDel)

One Sample t-test

data: diffDel

t = -13.421, df = 88, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.8480265 -0.6292769

sample estimates:

mean of x

-0.7386517
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Two-sample t-test with outlier deleted
Including outlier, had t = −1.7437

> t.test(activeDel,inactiveDel,var.equal = T)

Two Sample t-test

data: activeDel and inactiveDel

t = -1.6481, df = 176, p-value = 0.1011

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.6231323 0.1458289

sample estimates:

mean of x mean of y

10.73933 11.47798
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Comments

As expected, the two-sample t-test was less sensitive.

Because the covariance between energy consumption with
vent damper active and vent damper inactive was large,
the two-sample t-test was much less sensitive.

Deleting the outlier actually made the results more
convincing, even though it made the largest contribution to
the observed difference between means.

If the confidence interval for the effect of vent damper
could be converted to dollars, it would be very meaningful.
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What about normality?
The t-test assumes normality,

If the outlier is dropped, the data might be normal, maybe.

Try a sign test.

Then discuss robustness.
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Sign test

Under the null hypothesis of no effect, energy consumption
with vent damper active and vent damper inactive are
identically distributed.

Therefore if the distributions are continuous,
Pr{Xi > Yi} = Pr{Xi < Yi} = 1

2 .

(What do you have to assume about the joint distribution
to actually show this?)

Use a Bernoulli model and test H0 : θ = 0.5
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Calculate the sign test

> # Sign test

> neg = length(diff[diff<0]); pos = length(diff[diff>0])

> neg; pos

[1] 85

[1] 5

> p = neg/90

> Z = sqrt(90)*(p-1/2)/sqrt(p*(1-p)); Z

[1] 18.40716

There can be no doubt of the effect.
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Also, the t-test is robust with respect to normality

Compare T =
√
n(D−0)
S to Zn =

√
n(D−0)
S .

Central Limit Theorem says Zn
d→ Z ∼ N(0, 1).

And as df →∞, the t distribution becomes standard
normal.

So for large enough samples, the assumption of normality
used in the derivation of the t-test is not actually necessary.

Moral of the story: It’s always nice when the model is realistic,
but when the model is unrealistic it may or may not matter.
We have to study the consequences of model incorrectness.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf14
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