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Background Reading
Optional

I Chapter 1 of Linear models with R

I Chapter 1 of Davison’s Statistical models: Data, and
probability models for data.
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Goal of statistical analysis

The goal of statistical analysis is to draw reasonable conclusions
from noisy numerical data.
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Steps in the process of statistical analysis
One approach

I Consider a fairly realistic example or problem.

I Decide on a statistical model.

I Perhaps decide sample size.

I Acquire data.

I Examine and clean the data; generate displays and
descriptive statistics.

I Estimate model parameters, for example by maximum
likelihood.

I Carry out tests, compute confidence intervals, or both.

I Perhaps re-consider the model and go back to estimation.

I Based on the results of estimation and inference, draw
conclusions about the example or problem.

4 / 20



What is a statistical model?
You should always be able to state the model.

A statistical model is a set of assertions that partly specify the
probability distribution of the observable data. The
specification may be direct or indirect.

I Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.

I For i = 1, . . . , n, let Yi = β0 + β1xi1 + · · ·+ βkxik + εi,
where

β0, . . . , βk are unknown constants.
xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
Y1, . . . , Yn are observable random variables.

Is the model the same thing as the truth?
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Parameter Space

The parameter space is the set of values that can be taken on by
the parameter.

I Let X1, . . . , Xn be a random sample from a normal
distribution with expected value µ and variance σ2.
The parameter space is {(µ, σ2) : −∞ < µ <∞, σ2 > 0}.

I For i = 1, . . . , n, let Yi = β0 + β1xi1 + · · ·+ βkxik + εi,
where

β0, . . . , βk are unknown constants.
xij are known constants.
ε1, . . . , εn are independent N(0, σ2) random variables.
σ2 is an unknown constant.
Y1, . . . , Yn are observable random variables.

The parameter space is
{(β0, . . . , βk, σ2) : −∞ < βj <∞, σ2 > 0}.
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Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Statistical model

Letting θ denote the probability that a consumer will choose the
new blend, treat the data X1, . . . , Xn as a random sample from
a Bernoulli distribution. That is, independently for i = 1, . . . , n,

P (xi|θ) = θxi(1− θ)1−xi

for xi = 0 or xi = 1, and zero otherwise.

I Parameter space is the interval from zero to one.

I θ could be estimated by maximum likelihood.

I Large-sample tests and confidence intervals are available.
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Tests of statistical hypotheses

I Model: X ∼ Fθ
I X is the data vector, and X is the sample space: X ∈ X
I θ is the parameter, and Θ is the parameter space: θ ∈ Θ

I Null hypothesis is H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc
0

I Meaning of the null hypothesis is that nothing interesting is
happening.

I C ⊂ X is the critical region. Reject H0 in favour of HA

when X ∈ C.
I Significance level α (size of the test) is the maximum

probability of rejecting H0 when H0 is true.

I p-value is the smallest value of α for which H0 can be
rejected.

I Small p-values are interpreted as providing stronger
evidence against the null hypothesis.
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Type I and Type II error
A Neyman-Pearson idea rather than Fisher

I Type I error is to reject H0 when H0 is true.

I Type II error is to not reject H0 when H0 is false.

I 1− Pr{Type II Error} is called power.

I Power may be used to select sample size.
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Carry out a test to determine which brand of coffee is
preferred
Recall the model is X1, . . . , Xn

i.i.d.∼ B(1, θ)

Start by stating the null hypothesis.

I H0 : θ = 0.50

I H1 : θ 6= 0.50

I Could you make a case for a one-sided test?

I α = 0.05 as usual.

I Central Limit Theorem says θ̂ = X is approximately
normal with mean θ and variance θ(1−θ)

n .

11 / 20



Several valid test statistics for H0 : θ = θ0 are available
Two of them are

Z1 =

√
n(X − θ0)√
θ0(1− θ0)

and

Z2 =

√
n(X − θ0)√
X(1− Y )

What is the critical value? Your answer is a number.

> alpha = 0.05

> qnorm(1-alpha/2)

[1] 1.959964
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Calculate the test statistic and the p-value for each test
Suppose 60 out of 100 preferred the new blend

> theta0 = .5; ybar = .6; n = 100

> Z1 = sqrt(n)*(ybar-theta0)/sqrt(theta0*(1-theta0)); Z1

[1] 2

> pval1 = 2 * (1-pnorm(Z1)); pval1

[1] 0.04550026

> Z2 = sqrt(n)*(ybar-theta0)/sqrt(ybar*(1-ybar)); Z2

[1] 2.041241

> pval2 = 2 * (1-pnorm(Z2)); pval2

[1] 0.04122683
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Conclusions
I Do you reject H0? Yes, just barely.
I Isn’t the α = 0.05 significance level pretty arbitrary? Yes,

but if people insist on a Yes or No answer, this is what you
give them.

I What do you conclude, in symbols? θ 6= 0.50. Specifically,
θ > 0.50.

I What do you conclude, in plain language? Your answer is a
statement about coffee. More consumers prefer the new
blend of coffee beans.

I Can you really draw directional conclusions when all you
did was reject a non-directional null hypothesis? Yes.
Decompose the two-sided size α test into two one-sided
tests of size α/2. This approach works in general.

It is very important to state directional conclusions, and state
them clearly in terms of the subject matter. Say what
happened! If you are asked state the conclusion in plain
language, your answer must be free of statistical mumbo-jumbo.
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What about negative conclusions?
What would you say if Z = 1.84?

Here are two possibilities, in plain language.

I “This study does not provide clear evidence that
consumers prefer one blend of coffee beans over the other.”

I “The results are consistent with no difference in preference
for the two coffee bean blends.”

In this course, we will not just casually accept the null
hypothesis.
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Confidence intervals
Usually for individual parameters

I Point estimates may give a false sense of precision.

I We should provide a margin of probable error as well.
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Give a 95% confidence interval for the taste test data.
The answer is a pair of numbers. Show some work.

(
x− zα/2

√
x(1− x)

n
, x+ zα/2

√
x(1− x)

n

)

=

(
0.60− 1.96

√
0.6× 0.4

100
, 0.60 + 1.96

√
0.6× 0.4

100

)

= (0.504, 0.696)

In a report, you could say

I The estimated proportion preferring the new coffee bean
blend is 0.60± 0.096, or

I “Sixty percent of consumers preferred the new blend.
These results are expected to be accurate within 10
percentage points, 19 times out of 20.”
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Meaning of the confidence interval

I We calculated a 95% confidence interval of (0.504, 0.696)
for θ.

I Does this mean Pr{0.504 < θ < 0.696} = 0.95?

I No! The quantities 0.504, 0.696 and θ are all constants, so
Pr{0.504 < θ < 0.696} is either zero or one.

I The endpoints of the confidence interval are random
variables, and the numbers 0.504 and 0.696 are realizations
of those random variables, arising from a particular
random sample.

I Meaning of the probability statement: If we were to
calculate an interval in this manner for a large number of
random samples, the interval would contain the true
parameter around 95% of the time.

I The confidence interval is a guess, and the guess is either
right or wrong. But the guess is the constructed by a
method that is right 95% of the time.
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More on confidence intervals

I Can have confidence regions for the entire parameter vector
or multi-dimensional functions of the parameter vector.

I Confidence regions correspond to tests.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf14
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