Random Vectors ${ }^{1}$
 STA442/2101 Fall 2014

${ }^{1}$ See last slide for copyright information.

Background Reading: Renscher and Schaalje's Linear models in statistics

- Chapter 3 on Random Vectors and Matrices

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution is the distribution of the random matrix. Random matrices with just one column (say, $p \times 1$) may be called random vectors.

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix \mathbf{X} by $\left[X_{i, j}\right]$,

$$
E(\mathbf{X})=\left[E\left(X_{i, j}\right)\right]
$$

Immediately we have natural properties like

$$
\begin{aligned}
E(\mathbf{X}+\mathbf{Y}) & =E\left(\left[X_{i, j}+Y_{i, j}\right]\right) \\
& =\left[E\left(X_{i, j}+Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)+E\left(Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)\right]+\left[E\left(Y_{i, j}\right)\right] \\
& =E(\mathbf{X})+E(\mathbf{Y})
\end{aligned}
$$

Moving a constant through the expected value sign

Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$
\begin{aligned}
E(\mathbf{A X}) & =E\left(\left[\sum_{k=1}^{p} a_{i, k} X_{k, j}\right]\right) \\
& =\left[E\left(\sum_{k=1}^{p} a_{i, k} X_{k, j}\right)\right] \\
& =\left[\sum_{k=1}^{p} a_{i, k} E\left(X_{k, j}\right)\right] \\
& =\mathbf{A} E(\mathbf{X}) .
\end{aligned}
$$

Similar calculations yield $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$.

Variance-Covariance Matrices

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}$. The variance-covariance matrix of \mathbf{X} (sometimes just called the covariance matrix), denoted by $\operatorname{cov}(\mathbf{X})$, is defined as

$$
\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\}
$$

$\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\}$

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}) & =E\left\{\left(\begin{array}{l}
X_{1}-\mu_{1} \\
X_{2}-\mu_{2} \\
X_{3}-\mu_{3}
\end{array}\right)\left(\begin{array}{lll}
X_{1}-\mu_{1} & X_{2}-\mu_{2} & \left.X_{3}-\mu_{3}\right)
\end{array}\right\}\right. \\
& =E\left\{\begin{array}{lll}
\left(X_{1}-\mu_{1}\right)^{2} & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)^{2} & \left(X_{2}-\mu_{2}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{3}-\mu_{3}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
E\left\{\left(X_{1}-\mu_{1}\right)^{2}\right\} & E\left\{\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{(X _ { 1 } - \mu _ { 1 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{2}-\mu_{2}\right)^{2}\right\} & E\left\{(X _ { 2 } - \mu _ { 2 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)^{2}\right\}
\end{array}\right. \\
& =\left(\begin{array}{lll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var}\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{3}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) & \operatorname{Var}\left(X_{3}\right)
\end{array}\right) .
\end{aligned}
$$

So, the covariance matrix $\operatorname{cov}(\mathbf{X})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Matrix of covariances between two random vectors

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}_{x}$ and let \mathbf{Y} be a $q \times 1$ random vector with $E(\mathbf{Y})=\boldsymbol{\mu}_{y}$. The $p \times q$ matrix of covariances between the elements of \mathbf{X} and the elements of \mathbf{Y} is

$$
C(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}
$$

Adding a constant has no effect

- $\operatorname{cov}(\mathbf{X}+\mathbf{a})=\operatorname{cov}(\mathbf{X})$
- $C(\mathbf{X}+\mathbf{a}, \mathbf{Y}+\mathbf{b})=C(\mathbf{X}, \mathbf{Y})$

It's clear from the definitions:

- $\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\}$
- $C(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\top}\right\}$

So sometimes it is useful to let $\mathbf{a}=-\boldsymbol{\mu}_{x}$ and $\mathbf{b}=-\boldsymbol{\mu}_{y}$.

Analogous to $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$, while $\mathbf{A}=\left[a_{i, j}\right]$ is an $r \times p$ matrix of constants. Then

$$
\begin{aligned}
\operatorname{cov}(\mathbf{A X}) & =E\left\{(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})^{\top}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{A}(\mathbf{X}-\boldsymbol{\mu}))^{\top}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top} \mathbf{A}^{\top}\right\} \\
& =\mathbf{A} E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\top}\right\} \mathbf{A}^{\top} \\
& =\mathbf{A} \operatorname{cov}(\mathbf{X}) \mathbf{A}^{\top} \\
& =\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\top}
\end{aligned}
$$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf14

