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General Mixed Linear Model

Y = Xβ + Zb + ε

X is an n× p matrix of known constants

β is a p× 1 vector of unknown constants.

Z is an n× q matrix of known constants

b ∼ Nq(0,Σb) with Σb unknown but often diagonal

ε ∼ N(0, σ2In) , where σ2 > 0 is an unknown constant.
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Random vs. fixed effects

Y = Xβ + Zb + ε

Elements of β are called fixed effects.

Elements of b are called random effects.

Models with both are called mixed.
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Main application

A random factor is one in which the values of the factor are a
random sample from a populations of values.

Randomly select 20 fast food outlets, survey customers in each
about quality of the fries. Outlet is a random effects factor
with 20 values.

Randomly select 10 schools, test students at each school.
School is a random effects factor with 10 values.

Randomly select 15 naturopathic medicines for arthritis (there
are quite a few), and then randomly assign arthritis patients
to try them. Drug is a random effects factor.

Randomly select 15 lakes. In each lake, measure how clear the
water is at 20 randomly chosen points. Lake is a random
effects factor.
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One random factor
A nice simple example

Randomly select 5 farms.

Randomly select 10 cows from each farm, milk them, and
record the amount of milk from each one.

The one random factor is Farm.

Total n = 50

The idea is that “Farm” is a kind of random shock that pushes all
the amounts of milk in a particular farm up or down by the same
amount.
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Farm is a random shock

Yij = µ. + τi + εij,
where

µ. is an unknown constant parameter

τi ∼ N(0, σ2τ )

εij ∼ N(0, σ2)

τi and εij are all independent.

σ2τ ≥ 0 and σ2 > 0 are unknown parameters.

i = 1, . . . q and j = 1, . . . , k

There are q = 5 farms and k = 10 cows from each farm.
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General Mixed Linear Model Notation

Yij = µ. + τi + εij

Y = Xβ + Zb + ε
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...
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Y5,10


=



1
1
1
...
1
1
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...
...

...
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Distribution of Yij = µ. + τi + εij

Yij ∼ N(µ., σ
2
τ + σ2)

Cov(Yij , Yi,j′) = σ2τ for j 6= j′

Cov(Yij , Yi′,j′) = 0 for i 6= i′

Observations are not all independent.

Covariance matrix of Y is block diagonal: Matrix of matrices

Off-diagonal matrices are all zeros
Matrices on the diagonal (k × k) have the compound symmetry
structure  σ2 + σ2

τ σ2
τ σ2

τ

σ2
τ σ2 + σ2

τ σ2
τ

σ2
τ σ2

τ σ2 + σ2
τ


(Except it’s 10× 10.)
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Statistics based on Yij = µ. + τi + εij
And their distributions

Y i ∼ N(µ.,
σ2

k + σ2τ ) Cov(Y i, Yij − Y i) = 0

SSTR = k
∑q

i=1(Y i − Y .)
2 SSTR

σ2+kσ2
τ
∼ χ2(q − 1)

SSE =
∑q

i=1

∑k
j=1(Yij − Y i)

2 SSE
σ2 ∼ χ2(qk − q)

Last fact is true even though Yij are not independent, because

Y i = µ. + τi + εi
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Expected mean squares

Since SSTR
σ2+kσ2

τ
∼ χ2(q − 1), have E

(
SSTR
σ2+kσ2

τ

)
= q − 1.

E(MSTR) = E

(
SSTR

q − 1

)
= E

(
σ2 + kσ2τ
q − 1

× SSTR

σ2 + kσ2τ

)
=

σ2 + kσ2τ
q − 1

E

(
SSTR

σ2 + kσ2τ

)
=

σ2 + kσ2τ
q − 1

q − 1

= σ2 + kσ2τ

Similarly, E(MSE) = σ2.
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Components of variance

The proportion of variance in performance explained by the school
is

Corr(Yij , Yi,j′) =
σ2τ

σ2τ + σ2

Estimate with
MSTR−MSE

MSTR+ (k − 1)MSE

There is a confidence interval based on the F distribution.
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Testing H0 : σ2
τ = 0

Yij = µ. + τi + εij

Is this a strange thing to do?

SSTR = k
∑q
i=1(Y i − Y .)

2 SSTR
σ2+kσ2

τ
∼ χ2(q − 1) E(MSTR) = σ2 + kσ2

τ

SSE =
∑q
i=1

∑k
j=1(Yij − Y i)

2 SSE
σ2 ∼ χ2(qk − q) E(MSE) = σ2

SSTR and SSE are independent.

If H0 is true, F ∗ = MSTR
MSE ∼ F (q − 1, qk − q)

Expected mean squares suggest it will be big when H0 is false.

It’s the same as the F statistic for a fixed effects model.

This is the only case where it happens.

And under H1, the distribution is not a non-central F .
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Distribution when H0 : σ2
τ = 0 is false

SSTR
σ2+kσ2

τ
∼ χ2(q − 1) SSE

σ2 ∼ χ2(qk − q)

Note MSTR/(σ2+kσ2
τ )

MSE/σ2 ∼ F (q − 1, qk − q) whether H0 is true or
not.

Reject when

F ∗ =
MSTR

MSE
> fc

⇔ MSTR/(σ2 + kσ2τ )

MSE/σ2
>

σ2

σ2 + kσ2τ
fc

Power is a tail area of the central F distribution.
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Mixed models
The classical approach

There can be both fixed and random factors in the same
experiment

The interaction of any random factor with another factor
(whether fixed or random) is random.

F -tests are often possible, but they don’t always use Mean
Squared Error in the denominator of the F statistic.

Often, it’s the Mean Square for some interaction term.

The choice of what error term to use is relatively mechanical
for balanced models with equal sample sizes — based on
expected mean squares.
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Two-factor random effects: A and B both random
Equal sample sizes: k per cell

Effect Expected Mean Square F test

A σ2 + kbσ2α + kσ2αβ
MSA
MSAB

B σ2 + kaσ2β + kσ2αβ
MSB
MSAB

A×B σ2 + kσ2αβ
MSAB
MSE

Error σ2
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Mixed model: A fixed and B random
Equal sample sizes: k per cell

Effect Expected Mean Square F test

A σ2 + kb
∑
α2
i

a−1 + kσ2αβ
MSA
MSAB

B σ2 + kaσ2β
MSB
MSE

A×B σ2 + kσ2αβ
MSAB
MSE

Error σ2
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Extensions to larger designs are natural

Mean squares are all independent, and multiples of
chi-squared (if the design is balanced).

Look at expected mean squares to see which variance terms
will cancel in numerator and denominator under H0.

Calculation of expected mean squares can be automated.

Extends to nested designs.
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A Nested design with fixed effects

School One

Teacher 1

µ1

Teacher 2

µ2

Teacher 3

µ3

School Two

Teacher 1

µ4

Teacher 2

µ5

Teacher 3

µ6

Teacher 4

µ7

An unbalanced design
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Tests of nested effects are tests of contrasts

School One

Teacher 1

µ1

Teacher 2

µ2

Teacher 3

µ3

School Two

Teacher 1

µ4

Teacher 2

µ5

Teacher 3

µ6

Teacher 4

µ7

Schools H0 : 1
3 (µ1 + µ2 + µ3) = 1

4 (µ4 + µ5 + µ6 + µ7)

Teachers within Schools H0 : µ1 = µ2 = µ3 and µ4 = µ5 = µ6 = µ7
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Easy to extend the ideas

Can have more than one level of nesting. You could have
climate zones, lakes within climate zones, fishing boats within
lakes, . . .

There is no problem with combining nested and factorial
structures. You just have to keep track of what’s nested
within what.

Factors that are not nested are sometimes called “crossed.”
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Nesting and random effects

Nested models are often viewed as random effects models, but
there is no necessary connection between the two concepts.

It depends on how the study was conducted. Were the two
schools randomly selected from some population of schools, or
did someone just pick those two (maybe because there are just
two schools)?

Random effects, like fixed effects, can either be nested or not;
it depends on the logic of the design.
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Sub-sampling

Sub-sampling is an interesting case of nested and purely
random effects

For example, we take a random sample of towns, from each
town we select a random sample of households, and from each
household we select a random sample of individuals to test, or
measure, or question.
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Another good example
Of sub-sampling

We are studying waste water treatment, specifically the
porosity of “flocks,” nasty little pieces of something floating in
the tanks.

We randomly select a sample of flocks, and then cut each one
up into very thin slices. We then randomly select a sample of
slices (called “sections”) from each flock, look at it under a
microscope, and assign a number representing how porous it is
(how much empty space there is in a designated region of the
section).

The explanatory variables are flock and section. The research
question is whether section is explaining a significant amount
of the variance in porosity – because if not, we can use just
one section per flock, and save considerable time and expense.
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Repeated measures
Another way to describe within-cases

Sometimes an individual is tested under more than one
condition, and contributes a response for each value of a
categorical explanatory variable.

One can view “subject” as just another random effects factor,
because subjects supposedly were randomly sampled.

Subject would be nested within sex, but might cross stimulus
intensity.

This is the classical (old fashioned) way to analyze repeated
measures.
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Sometimes there is a lot of pretending

Of course lots of the time, nothing is randomly selected – but
people use random effects models anyway. Why pretend?

Sometimes they are thinking that in a better world, lakes
would have been randomly selected.

Or sometimes, the scientists are thinking that they really
would like to generalize to the entire population of lakes, and
therefore should use statistical tools that support such
generalization, even if there was no random sampling.

But remember that no statistical method can compensate for
a biased sample.

Often the scientists are quite aware of this point, but they use
random effects models anyway because it’s just a tradition in
certain sub-areas of research, and everybody expects to see
them.
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Problems with the classical approach

Normality matters in a serious way.

Sometimes (especially for complicated mixed models) a valid
F -test for an effect of interest just doesn’t exist.

When sample sizes are unbalanced, everything falls apart.

Mean squares are independent of MSE, but not of one another.
Chi-squared variables involve matrix inverses, and variance
terms no longer cancel in numerator and denominator.
What about covariates? Now it gets really complicated.

Standard large-sample methods are no help.
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A modern approach using the general mixed linear
model

Y = Xβ + Zb + ε

Y ∼ Nn(Xβ,ZΣbZ
> + σ2In)

Estimate β as usual with (X>X)−1X>Y

Estimate Σb and σ2 by maximum likelihood, or be
“restricted” maximum likelihood.
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Restricted maximum likelihood

Y = Xβ + Zb + ε

Transform Y by the q × n matrix K.

The rows of K are orthoganal to the columns of X, meaning
KX = 0.

Then

KY = KXβ + KZb + Kε

= KZb + Kε

∼ N(0,KZΣbZ
>K> + σ2KK>)

Estimate Σb and σ2 by maximum likelihood.

A big theorem says the result does not depend on the choice
of K.
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Nice results from restricted maximum likelihood

F statistics that correspond to the classical ones for balanced
designs.

For unbalanced designs, “F statistics” that are actually
excellent F approximations — not quite F , but very close.

R’s nlme package and SAS proc mixed.

Like V (ε) can be block diagonal, with useful structures . . .
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any
part of it as you like and share the result freely. The LATEX source
code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf14
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