\documentclass[mathserif]{beamer} % Get Computer Modern math font. % Uncomment next 2 lines instead of the first for article-style handout: % \documentclass[12pt]{article} % \usepackage{beamerarticle} \usefonttheme{serif} % Looks like Computer Modern for non-math text -- nice! \setbeamertemplate{navigation symbols}{} % Supress navigation symbols at bottom % \usetheme{Berlin} % Diplays sections on top % \usetheme{Warsaw} % Diplays sections on top \usetheme{Frankfurt} % Diplays sections on top: Fairly thin but swallows some material at bottom of crowded slides \usepackage[english]{babel} \setbeamertemplate{footline}[frame number] \mode % \mode{\setbeamercolor{background canvas}{bg=black!5}} \title{Multivariate Linear Model} \subtitle {For Between-Within Designs} % (optional) \date{} % To suppress date \begin{document} \begin{frame} \titlepage \end{frame} %\begin{frame} %\frametitle{Overview} %\tableofcontents %\end{frame} \begin{frame}{Same study can have both between and within-cases factors} {Example: Grapefruit sales} \begin{itemize} \item Cases are stores \item Sales measured at every store with three different price levels (Random order) \item Three price levels: Within-stores factor \item Incentive program for produce managers (Yes-No): Between-stores factor \end{itemize} \end{frame} \begin{frame}{Multivariate Linear Model}%{Subtitles are optional.} \begin{displaymath} {\Large\mathbf{Y} = \mathbf{XB} + \boldsymbol{\epsilon}}, \end{displaymath} where \begin{itemize} \item $\mathbf{Y}$ is an $n \times k$ random matrix, with one response variable in each column. \item $\mathbf{X}$ is an $n \times p$ matrix of fixed, observable constants. There is one (between-cases) explanatory variable in each column. \item $\mathbf{B}$ is a $p \times k$ matrix of unknown parameters (regression coefficients). \item $\boldsymbol{\epsilon}$ is an $n \times k$ random matrix. The rows of $\boldsymbol{\epsilon}$ are independent multivariate normals with expected value $\boldsymbol{0}$ and $k \times k$ variance-covariance matrix $\boldsymbol{\Sigma}$. \end{itemize} \end{frame} \begin{frame}{One Column of $\mathbf{B}$ for Each Response Variable}%{Subtitles are optional.} \begin{displaymath} \mathbf{B} = \left( \begin{array}{c c c c} \beta_{0,1} & \beta_{0,2} & \cdots & \beta_{0,k} \\ \beta_{1,1} & \beta_{1,2} & \cdots & \beta_{1,k} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{(p-1),1} & \beta_{(p-1),2} & \cdots & \beta_{(p-1),k} \\ \end{array} \right) \end{displaymath} \vspace{10mm} $\widehat{\boldsymbol{B}} = (\mathbf{X}^\prime \mathbf{X})^{-1} \mathbf{X}^\prime \mathbf{Y}$ (a $p \times k$ matrix), so MLEs are what one would get from $k$ univariate regressions. \end{frame} \begin{frame}{Null Hypothesis: $\mathbf{LBM=0}$} \begin{itemize} \item $\mathbf{L}$ is $r \times p$ with $r \leq p$. \item $\mathbf{B}$ is $p \times k$. \item $\mathbf{M}$ is $k \times q$ with $q \leq k$. \item With $\mathbf{M=I}$, have \begin{itemize} \item All the usual linear null hypotheses \item Simultaneously for all $k$ response variables \item Same null hypothesis for each response variable \end{itemize} \item The matrix $\mathbf{M}$ specifies linear combinations of the response variables (not obvious). \end{itemize} \end{frame} \begin{frame}{Linear Combinations of the Response Variables} \begin{displaymath} \mathbf{Y} = \mathbf{XB} + \boldsymbol{\epsilon} \Rightarrow \mathbf{YM} = \mathbf{XBM} + \boldsymbol{\epsilon}\mathbf{M} \end{displaymath} \begin{itemize} \item Each column of $\mathbf{M}$ yields a linear combination of the $k$ response variables. \item New ``$\mathbf{Y}$" $=\mathbf{YM}$ \item New ``$\mathbf{B}$" $=\mathbf{BM}$ \item New ``$\boldsymbol{\epsilon}$" $=\boldsymbol{\epsilon}\mathbf{M}$ \item Rows of new ``$\boldsymbol{\epsilon}$" are independent $N_q(\mathbf{0},\mathbf{M}^\prime \boldsymbol{\Sigma} \mathbf{M})$ \end{itemize} \end{frame} \begin{frame}{Moral of the Story} \begin{itemize} \item Can easily carry out multivariate tests on collections of linear combinations of the response variables \item Multiple response variables could represent measurements at levels of one or more within-cases factors (think 3 Grapefruit Sales numbers) \item Linear combinations can correspond to main effects, interactions of within-cases factors \end{itemize} \end{frame} \end{document} \begin{frame}{Four Exact Likelihood Ratio Tests} \end{frame} \begin{frame}{}%{Subtitles are optional.} \end{frame}