Likelihood 2: Wald Tests¹ STA442/2101 Fall 2014

 $^{^1 \}mathrm{See}$ last slide for copyright information.

Background Reading

Davison Chapter 4, especially Sections 4.3 and 4.4

Vector of MLEs is Asymptotically Normal That is, Multivariate Normal

This yields

- ► Confidence intervals
- Z-tests of $H_0: \theta_j = \theta_0$
- ► Wald tests
- ► Score Tests
- ▶ Indirectly, the Likelihood Ratio tests

Under Regularity Conditions (Thank you, Mr. Wald)

• A $k \times k$ matrix

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]$$

• The Fisher Information in the whole sample is $n\mathcal{I}(\boldsymbol{\theta})$

٠

 $\widehat{\boldsymbol{\theta}}_n$ is asymptotically $N_k\left(\boldsymbol{\theta}, \frac{1}{n}\boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\right)$

- ► Asymptotic covariance matrix of $\hat{\theta}_n$ is $\frac{1}{n}\mathcal{I}(\theta)^{-1}$, and of course we don't know θ .
- ► For tests and confidence intervals, we need a good *approximate* asymptotic covariance matrix,
- Based on a consistent estimate of the Fisher information matrix.
- $\mathcal{I}(\widehat{\boldsymbol{\theta}}_n)$ would do.
- But it's inconvenient: Need to compute partial derivatives and expected values in

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]$$

and then substitute $\widehat{\boldsymbol{\theta}}_n$ for $\boldsymbol{\theta}$.

Another approximation of the asymptotic covariance matrix

Approximate

$$\frac{1}{n} \mathcal{I}(\boldsymbol{\theta})^{-1} = \left[n E[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(Y; \boldsymbol{\theta})] \right]^{-1}$$

with

$$\widehat{\mathbf{V}}_n = \left(\left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1}$$

Details of why it's a good approximation are omitted.

Compare

Hessian and (Estimated) Asymptotic Covariance Matrix

•
$$\widehat{\mathbf{V}}_n = \left(\left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n} \right)^{-1}$$

• Hessian at MLE is $\mathbf{H} = \left[-\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}, \mathbf{Y}) \right]_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_n}$

- ▶ So to estimate the asymptotic covariance matrix of θ , just invert the Hessian.
- ▶ The Hessian is usually available as a by-product of numerical search for the MLE.

Connection to Numerical Optimization

- Suppose we are minimizing the minus log likelihood by a direct search.
- ▶ We have reached a point where the gradient is close to zero. Is this point a minimum?
- ▶ The Hessian is a matrix of mixed partial derivatives. If all its eigenvalues are positive at a point, the function is concave up there.
- Partial derivatives are often approximated by the slopes of secant lines – no need to calculate them symbolically.
- ▶ It's *the* multivariable second derivative test.

So to find the estimated asymptotic covariance matrix

- ▶ Minimize the minus log likelihood numerically.
- ▶ The Hessian at the place where the search stops is usually available.
- Invert it to get $\widehat{\mathbf{V}}_n$.
- ▶ This is so handy that sometimes we do it even when a closed-form expression for the MLE is available.

Estimated Asymptotic Covariance Matrix $\widehat{\mathbf{V}}_n$ is Useful

- Asymptotic standard error of $\hat{\theta}_j$ is the square root of the *j*th diagonal element.
- ▶ Denote the asymptotic standard error of $\hat{\theta}_j$ by $S_{\hat{\theta}_i}$.
- ► Thus

$$Z_j = rac{\widehat{ heta}_j - heta_j}{S_{\widehat{ heta}_j}}$$

is approximately standard normal.

Confidence Intervals and Z-tests

Have $Z_j = \frac{\hat{\theta}_j - \theta_j}{S_{\hat{\theta}_j}}$ approximately standard normal, yielding

- Confidence intervals: $\hat{\theta}_j \pm S_{\hat{\theta}_j} z_{\alpha/2}$
- Test $H_0: \theta_j = \theta_0$ using

$$Z = \frac{\widehat{\theta}_j - \theta_0}{S_{\widehat{\theta}_j}}$$

And Wald Tests

$$W_n = (\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{h})^\top \left(\mathbf{L}\widehat{\mathbf{V}}_n\mathbf{L}^\top\right)^{-1} (\mathbf{L}\widehat{\boldsymbol{\theta}}_n - \mathbf{h})$$

A very important special case of the earlier

$$W_n = n \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^\top \left(\mathbf{L} \widehat{\boldsymbol{\Sigma}}_n \mathbf{L}^\top \right)^{-1} \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)$$
$$= \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)^\top \left(\mathbf{L} \frac{1}{n} \widehat{\boldsymbol{\Sigma}}_n \mathbf{L}^\top \right)^{-1} \left(\mathbf{L} \mathbf{T}_n - \mathbf{h} \right)$$

Comparing Likelihood Ratio and Wald tests

- Asymptotically equivalent under H_0 , meaning $(W_n G_n^2) \xrightarrow{p} 0$
- Under H_1 ,
 - ▶ Both have the same approximate distribution (non-central chi-square).
 - Both go to infinity as $n \to \infty$.
 - ▶ But values are not necessarily close.
- ▶ Likelihood ratio test tends to get closer to the right Type I error rate for small samples.
- Wald can be more convenient when testing lots of hypotheses, because you only need to fit the model once.
- ▶ Wald can be more convenient if it's a lot of work to write the restricted likelihood.

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf14