
STA 2101/442 Assignment Three1

The questions are just practice for the quiz, and are not to be handed in. Use R as necessary for Question 19,
and bring your printout to the quiz.

1. This is about how to simulate from a continuous univariate distribution. Let the random variable X
have a continuous distribution with density fX(x) and cumulative distribution function FX(x). Suppose
the cumulative distribution function is strictly increasing over the set of x values where 0 < FX(x) < 1,
so that FX(x) has an inverse. Let U have a uniform distribution over the interval (0, 1). Show that
the random variable Y = F−1X (U) has the same distribution as X. Hint: You will need an expression
for FU (u) = Pr{U ≤ u}, where 0 ≤ u ≤ 1.

2. Let X1, . . . , Xn be a random sample from a Binomial distribution with parameters 3 and θ. That is,

P (Xi = xi) =

(
3

xi

)
θxi(1− θ)3−xi ,

for xi = 0, 1, 2, 3. Find the maximum likelihood estimator of θ, and show that it is strongly consistent.

3. Let X1, . . . , Xn be a random sample from a continuous distribution with density

f(x; τ) =
τ1/2√

2π
e−

τx2

2 ,

where the parameter τ > 0. Let

τ̂ =
n∑n

i=1X
2
i

.

Is τ̂ a consistent estimator of τ? Answer Yes or No and prove your answer. Hint: You can just write
down E(X2) by inspection. This is a very familiar distribution.

4. Let X1, . . . , Xn be a random sample from a distribution with mean µ. Show that Tn = 1
n+400

∑n
i=1Xi

is a strongly consistent estimator of µ.

5. Let X1, . . . , Xn be a random sample from a distribution with mean µ and variance σ2. Prove that the

sample variance S2 =
∑n
i=1(Xi−X)2

n−1 is a strongly consistent estimator of σ2.

6. Independently for i = 1, . . . , n, let
Yi = βXi + εi,

where E(Xi) = E(εi) = 0, V ar(Xi) = σ2
X , V ar(εi) = σ2

ε , and εi is independent of Xi. Let

β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

.

Is β̂ a consistent estimator of β? Answer Yes or No and prove your answer.

7. In this problem, you’ll use (without proof) the variance rule, which says that if θ is a real constant
and T1, T2, . . . is a sequence of random variables with

lim
n→∞

E(Tn) = θ and lim
n→∞

V ar(Tn) = 0,

then Tn
P→ θ.

1Copyright information is at the end of the last page.
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In Problem 6, the independent variables are random. Here they are fixed constants, which is more
standard (though a little strange if you think about it). Accordingly, let

Yi = βxi + εi

for i = 1, . . . , n, where ε1, . . . , εn are a random sample from a distribution with expected value zero
and variance σ2, and β and σ2 are unknown constants.

(a) What is E(Yi)?

(b) What is V ar(Yi)?

(c) Find the Least Squares estimate of β by minimizing Q =
∑n
i=1(Yi − βxi)2 over all values of β.

Let β̂n denote the point at which Q is minimal.

(d) Is β̂n unbiased? Answer Yes or No and show your work.

(e) Give a nice simple condition on the xi values that guarantees β̂n will be consistent. Show your
work. Remember, in this model the xi are fixed constants, not random variables.

(f) Let β̂2,n = Y n
xn

. Is β̂2,n unbiased? Consistent? Answer Yes or No to each question and show your
work. Do you need a condition on the xi values ?

(g) Prove that β̂n is a more accurate estimator than β̂2,n in the sense that it has smaller variance.
Hint: The sample variance of the independent variable values cannot be negative.

8. Let X be a random variable with expected value µ and variance σ2. Show X
n

p→ 0.

9. Let X1, . . . , Xn be a random sample from a Gamma distribution with α = β = θ > 0. That is, the
density is

f(x; θ) =
1

θθΓ(θ)
e−x/θxθ−1,

for x > 0. Let θ̂ = Xn. Is θ̂ a consistent estimator of θ? Answer Yes or No and prove your answer.

10. The ordinary univariate Central Limit Theorem says that if X1, . . . , Xn are a random sample (in-
dependent and identically distributed) from a distribution with expected value µ and variance σ2,
then

Z(1)
n =

√
n(Xn − µ)

σ

d→ Z ∼ N(0, 1).

An application of some Slutsky theorems (see lecture slides) shows that also,

Z(2)
n =

√
n(Xn − µ)

σ̂n

d→ Z ∼ N(0, 1),

where σ̂n is any consistent estimator of σ. For this problem, suppose that X1, . . . , Xn are Bernoulli(θ).

(a) What is µ?

(b) What is σ2?

(c) Re-write Z
(1)
n for the Bernoulli exanple.

(d) What about Zn =
√
n(Xn−θ)√
Xn(1−Xn)

? Does Zn converge in distribution to a standard normal? Why or

why not?

(e) What about the t statistic Tn =
√
n(Xn−µ)
Sn

, where Sn is the sample standard deviation? Does Tn
converge in distribution to a standard normal? Why or why not?
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11. If the p× 1 random vector X has variance-covariance matrix Σ and A is an m× p matrix of constants,
prove that the variance-covariance matrix of AX is AΣA′. Start with the definition of a variance-
covariance matrix:

V (Z) = E(Z− µz)(Z− µz)
′.

12. If the p×1 random vector X has mean µ and variance-covariance matrix Σ, show Σ = E(XX′)−µµ′.

13. Let the p × 1 random vector X have mean µ and variance-covariance matrix Σ, and let c be a p × 1
vector of constants. Find V (X + c). Show your work.

14. Let X be a p × 1 random vector with mean µx and variance-covariance matrix Σx, and let Y be a
q × 1 random vector with mean µy and variance-covariance matrix Σy. Recall that C(X,Y) is the

p× q matrix C(X,Y) = E
(
(X− µx)(Y − µy)′

)
.

(a) What is the (i, j) element of C(X,Y)?

(b) For this item, p = q. Find an expression for V (X + Y) in terms of Σx, Σy and C(X,Y). Show
your work.

(c) Simplify further for the special case where Cov(Xi, Yj) = 0 for all i and j.

(d) Let c be a p× 1 vector of constants and d be a q × 1 vector of constants. Find C(X + c,Y + d).
Show your work.

15. Denote the moment-generating function of a random variable Y by MY (t). The moment-generating
function is defined by MY (t) = E(eY t). Recall that the moment-generating function corresponds
uniquely to the probability distribution.

(a) Let a be a constant. Prove that MaX(t) = MX(at).

(b) Prove that MX+a(t) = eatMX(t).

(c) Let X1 and X2 be independent random variables. Prove that

MX1+X2
(t) = MX1

(t)MX1
(t).

For convenience, you may assume that X1 and X2 are continuous, so you will integrate. This
result extends to M∑n

i=1Xi
(t) =

∏n
i=1MXi(t), but you don’t have to show it. (You could use

induction.)

16. Recall that if X ∼ N(µ, σ2), it has moment-generating function MX(t) = eµt+
1
2σ

2t2 .

(a) Let X ∼ N(µ, σ2) and Y = aX + b, where a and b are constants. Find the distribution of Y .
Show your work.

(b) Let X ∼ N(µ, σ2) and Z = X−µ
σ . Find the distribution of Z.

(c) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distribution of Y =∑n
i=1Xi.

(d) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distribution of the
sample mean X.

(e) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distribution of Z =
√
n(X−µ)
σ .
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17. A Chi-squared random variable X with parameter ν > 0 has moment-generating function MX(t) =
(1− 2t)−ν/2.

(a) Let X1, . . . , Xn be independent random variables with Xi ∼ χ2(νi) for i = 1, . . . , n. Find the
distribution of Y =

∑n
i=1Xi.

(b) Let Z ∼ N(0, 1). Find the distribution of Y = Z2. For this one, you need to integrate. Recall

that the density of a normal random variable is f(x) = 1
σ
√
2π
e−

(x−µ)2

2σ2 .

(c) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Find the distribution of Y =
1
σ2

∑n
i=1 (Xi − µ)

2
.

(d) Let Y = X1 +X2, where X1 and X2 are independent, X1 ∼ χ2(ν1) and Y ∼ χ2(ν1 + ν2), where
ν1 and ν2 are both positive. Show X2 ∼ χ2(ν2).

(e) Let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Show

(n− 1)S2

σ2
∼ χ2(n− 1),

where S2 =
∑n
i=1(Xi−X)

2

n−1 . Hint:
∑n
i=1 (Xi − µ)

2
=
∑n
i=1

(
Xi −X +X − µ

)2
= . . .

You may use the independence of X and S2 without proof, for now.

18. Recall the definition of the t distribution. If Z ∼ N(0, 1), W ∼ χ2(ν) and Z and W are independent,
then T = Z√

W/ν
is said to have a t distribution with ν degrees of freedom, and we write T ∼ t(ν).

As in the last question, let X1, . . . , Xn be random sample from a N(µ, σ2) distribution. Show that

T =
√
n(X−µ)
S ∼ t(n − 1). Once again, you may use the independence of X and S2 without proof for

now.

19. Fine machine screws are manufactured so as to have a diameter of one millimetre, but of course nothing
is perfect. The screws have an expected diameter of one millimetre, and if the manufacturing process is
running properly, they also have a very small standard deviation. As long as the standard deviation is
three micrometres (thousandths of a millimetre) or less, virtually all the screws will fit properly. The
industrial quality control process involves taking repeated samples of screws, measuring them, and
determining whether the standard deviation is greater than three.

Three features of this application are a bit unusual. First, the data really are normal. Variation
from screw to screw is driven by a large number of separate tiny influences that more or less add up,
and so the Central Limit Theorem applies. Second, nobody pays much attention to the mean; it’s
virtually always about one millimetre. When the manufacturing process starts to go goes wrong, what
happens is that the variance goes up. Third, nobody cares if the standard deviation is less than three
micrometres. They only worry if it’s too big, because then they have to stop the assembly line and
service the machines. So, a one-tailed test really is appropriate.

It’s a pain to measure those screws, so the engineers take samples of size ten. The most recent sample
yields a sample mean of 1002.687 and a sample standard deviation of 4.51.

(a) What is the model?

(b) What is the null hypothesis, in symbols? What is the alternative hypothesis?

(c) An earlier problem suggests a test statistic. Write down the formula.

(d) Use R to calculate the p-value. The answer is a number. Do you reject H0 at α = 0.05? Do you
stop the assembly line?

(e) Derive a (1− α)100% confidence interval for σ (not σ2). Show your work.
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(f) Calculate your confidence interval for the numerical data given above, using α = 0.05. Your
answer is a set of two numbers.

(g) Don’t you think a one-sided confidence interval would be better here? Derive the formula for a
statistic (say L, for upper limit) such that Pr{σ < L} = 1− α.

(h) Calculate your one-sided confidence interval for the numerical data given above, using α = 0.05.
Your answer is a single number.

(i) I hope that you are at least a little uncomfortable with that sample size of n = 10. Is it enough?
The answer to such questions is always another question: “Enough for what?” Suppose that if
the true value of σ is 4 or more, the quality control engineers want to be able to detect it with
probability at least 0.90, using the usual α = 0.05 significance level. What’s the smallest sample
size they can get away with? Please approach the problem this way.

i. First, derive a formula for the power of the test, for general n, α, σ0 and true σ.

ii. What is the power for an n of exactly 10 (the engineers’ intuitive choice) when the true value
of σ is 4? The answer is a number

iii. Then, plug in all the numbers except n. Starting with a nice small sample size (one lower
than 10), increase n, calculating the power each time, until the power exceeds 0.90. Your
final answer is a number.

This assignment was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is
licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of
it as you like and share the result freely. The LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf14
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