STA 2101/442 Assignment Twelve ${ }^{1}$

Do these questions in preparation for the final exam. The R questions will not be on the final, but they provide some guidance about what to do with the data. So if you do them, you will be able to guess what I will do with similar data sets on the final exam.

1. In a dichotic listening experiment, subjects wear stereo headphones that allow the presentation of different sound tracks to each ear, at the same time. In this example, right-handed female university students listened to short lectures on art history in the presence of background noise. After each lecture, they answered a set of multiple choice questions.
Two factors were varied experimentally:

- Noise Type: The background noise consisted of either Hip-hop music, Classical music or Radio commercials. Volume was carefully held constant.
- Presentation: Subjects heard (simultaneously) either
- Lecture (Signal) in the left ear and distraction (Noise) in the right, or
- Distraction (Noise) in the left ear and lecture (Signal) in the right, or
- Both Signal and Noise in both ears

Each subject in the experiment experienced all nine treatment combinations, in a balanced order that was different for each subject, and randomly assigned. Thus, there are nine data values for each subject: number of questions answered correctly in each experimental condition. The layout of the data is given below:

Signal in	Signal in	Signal in
Left Ear	Right Ear	Both Ears

	HipHop	Classc	Radio	HipHop	Classc	Radio	HipHop	Classc	Radio
	test11	test12	test13	test21	test22	test23	test31	test32	test33
1	13	12	10	15	14	14	14	13	14
2	4	8	8	6	5	8	6	3	4
3	13	15	11	11	13	15	11	13	12

Data are given in the file Dichotic.data. There is a link from the course home page in case the one in this document does not work.
(a) Test for both main effects and for the interaction. Be able to give the F statistic, the degrees of freedom and the p-value.
(b) If a main effect is significant, calculate the marginal means and test for pairwise differences of marginal means, with a Bonferroni correction. Remember, Hotelling's T-squared for a single contrast is equivalent to a matched t-test. Be able to state conclusions (if any) in plain, non-statistical language.
(c) If the interaction is significant at $\alpha=0.05$ (and only then), make a two-way table of treatment means. Conduct tests of contrasts that will allow you to understand the interaction and describe it in plain, non-statistical language. Again, only do this if you reject the null hypothesis of no interaction.

[^0]2. In a test of how well people remember instructional materials, subjects were presented with training materials that were either in Black and White or in Colour. Their ability to recall the material was tested with both Cartoon and Realistic testing materials at two points in time - immediately after training, and several weeks later. The variables are

- Colour versus Black and White training materials
- Cartoon1: Recall at Time One, Cartoon testing materials
- Real1: Recall at Time One, Realistic testing materials
- Cartoon2: Recall at Time Two, Cartoon testing materials
- Real2: Recall at Time Two, Realistic testing materials

Data are given in the file cartoon2.data. There is a link from the course home page in case the one in this document does not work.
(a) Think of this as a three-factor design. Which factors are between cases and which are within?
(b) Fortunately, the within-cases factors have only two levels, so you never need to test several difference variables simultaneously. This means you don't need manove; you can get away with purely univariate analysis of variance. Think about this.
(c) Your goal is to test all the main effects and interactions. In every case, you are doing a regression analysis with effect coding, and the response variable is computed from the data in the data file. For each effect (how many are there?) specify the response variable, and give the null hypothesis in terms of β values. Which of the tests are about the intercept?
(d) Produce all tests of the main effects and interactions. For each one, be able to give the F statistic, the degrees of freedom and the p-value. You might as well make a table.
(e) Interpret all results in plain, non-statistical language. You will have to calculate some treatment means to figure out what is going on.
(f) This data set is similar to one of the data sets for the final exam. Which one?
3. The Ontario government selects a random sample of q grade schools. From each school, a random sample of k students is selected and given a reading test. School is the explanatory variable. Because the values of this variable represent a random sample from a larger populations, a random effects model is appropriate. A standard version that applies to this situation is

$$
Y_{i j}=\mu+\tau_{i}+\epsilon_{i j}
$$

where
μ is an unknown constant parameter.
$\tau_{i} \sim N\left(0, \sigma_{\tau}^{2}\right)$ and $\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)$.
τ_{i} and $\epsilon_{i j}$ are all independent, $i=1, \ldots q$ and $j=1, \ldots, k$.
(a) What is the distribution of $Y_{i j}$? Just write down the answer. You need not show any work.
(b) Are the $Y_{i j}$ all independent? Consider two cases.
(c) What is the distribution of $\bar{Y}_{i}=\frac{1}{k} \sum_{j=1}^{k} Y_{i j}$? State your answer; the only work you need to show is your calculation of the variance.
(d) Find $\operatorname{Cov}\left(\bar{Y}_{i}, Y_{i j}-\bar{Y}_{i}\right)$. Show your work.
(e) Define $\operatorname{SSTR}=k \sum_{i=1}^{q}\left(\bar{Y}_{i}-\bar{Y} .\right)^{2}$, where $\bar{Y} .=\frac{1}{q} \sum_{i=1}^{q} \bar{Y}_{i}$. Find the distribution of $\frac{S S T R}{\sigma^{2}+k \sigma_{\tau}^{2}}$. Hint: You can make this a very easy problem. What is the joint distribution of $\bar{Y}_{1}, \ldots, \bar{Y}_{q}$?
(f) Define $S S E=\sum_{i=1}^{q} \sum_{j=1}^{k}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}$. Find the distribution of $\frac{S S E}{\sigma^{2}}$. Again you may use a well-known fact to make the problem easier, but do not forget your answer to $3 b$.
(g) The proportion of variance in an observation $Y_{i j}$ that is explained by School is $\frac{\sigma_{\tau}^{2}}{\sigma_{\tau}^{2}+\sigma^{2}}$. Give a reasonable estimator for this quantity; show some work.
(h) What null hypothesis would you use to test for the effect of school on students' reading scores? State the null hypothesis in symbolic form; that is, it's a statement in terms of Greek letters.
(i) An exact (not large-sample) test is available for this hypothesis. Give a formula for the test statistic. Also state its distribution under H_{0}, including the degrees of freedom. Briefly indicate why it has the distribution you claim.
(j) Show that the power of this test is based on a central rather than a non-central F distribution.
(k) Suppose that the government's primary interest is in testing whether School has any effect at all on average reading score. Since resources are limited, would you advise the government to spend money on sampling more schools, or more students per school? Why?

This assignment was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{L}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf 14

[^0]: ${ }^{1}$ Copyright information is at the end of the last page.

