Random Vectors¹ STA442/2101 Fall 2013

 $^{^1 \}mathrm{See}$ last slide for copyright information.

Background Reading: Renscher and Schaalje's *Linear* models in statistics

- Chapter 3 on Random Vectors and Matrices
- Chapter 4 on the Multivariate Normal Distribution

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their joint probability distribution is the distribution of the random matrix. Random matrices with just one column (say, $p \times 1$) may be called *random vectors*.

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix **X** by $[X_{i,j}]$,

$$E(\mathbf{X}) = [E(X_{i,j})].$$

Immediately we have natural properties like

$$E(\mathbf{X} + \mathbf{Y}) = E([X_{i,j}] + [Y_{i,j}])$$

= $[E(X_{i,j} + Y_{i,j})]$
= $[E(X_{i,j}) + E(Y_{i,j})]$
= $[E(X_{i,j})] + [E(Y_{i,j})]$
= $E(\mathbf{X}) + E(\mathbf{Y}).$

Moving a constant through the expected value sign

Let $\mathbf{A} = [a_{i,j}]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$E(\mathbf{AX}) = E\left(\left[\sum_{k=1}^{p} a_{i,k} X_{k,j}\right]\right)$$
$$= \left[E\left(\sum_{k=1}^{p} a_{i,k} X_{k,j}\right)\right]$$
$$= \left[\sum_{k=1}^{p} a_{i,k} E(X_{k,j})\right]$$
$$= \mathbf{A}E(\mathbf{X}).$$

Similar calculations yield $E(\mathbf{AXB}) = \mathbf{A}E(\mathbf{X})\mathbf{B}$.

Variance-Covariance Matrices

Let **X** be a $p \times 1$ random vector with $E(\mathbf{X}) = \boldsymbol{\mu}$. The variance-covariance matrix of **X** (sometimes just called the covariance matrix), denoted by $V(\mathbf{X})$, is defined as

$$V(\mathbf{X}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})' \right\}.$$

$V(\mathbf{X}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})' \right\}$

$$cov(\mathbf{X}) = E\left\{ \begin{pmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ X_3 - \mu_3 \end{pmatrix} \begin{pmatrix} X_1 - \mu_1 & X_2 - \mu_2 & X_3 - \mu_3 \end{pmatrix} \right\}$$

$$= E\left\{ \begin{pmatrix} (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) & (X_1 - \mu_1)(X_3 - \mu_3) \\ (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 & (X_2 - \mu_2)(X_3 - \mu_3) \\ (X_3 - \mu_3)(X_1 - \mu_1) & (X_3 - \mu_3)(X_2 - \mu_2) & (X_3 - \mu_3)^2 \end{pmatrix} \right\}$$

$$= \begin{pmatrix} E\{(X_1 - \mu_1)^2\} & E\{(X_1 - \mu_1)(X_2 - \mu_2)\} & E\{(X_1 - \mu_1)(X_3 - \mu_3)^2 \\ E\{(X_2 - \mu_2)(X_1 - \mu_1)\} & E\{(X_2 - \mu_2)^2\} & E\{(X_2 - \mu_2)(X_3 - \mu_3)^2 \\ E\{(X_3 - \mu_3)(X_1 - \mu_1)\} & E\{(X_3 - \mu_3)(X_2 - \mu_2)\} & E\{(X_3 - \mu_3)^2\} \end{pmatrix}$$

$$= \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) & Cov(X_1, X_3) \\ Cov(X_1, X_2) & Var(X_2) & Cov(X_2, X_3) \\ Cov(X_1, X_3) & Cov(X_2, X_3) & Var(X_3) \end{pmatrix}.$$

So, the covariance matrix $V(\mathbf{X})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Matrix of covariances between two random vectors

Let **X** be a $p \times 1$ random vector with $E(\mathbf{X}) = \boldsymbol{\mu}_x$ and let **Y** be a $q \times 1$ random vector with $E(\mathbf{Y}) = \boldsymbol{\mu}_y$. The $p \times q$ matrix of covariances between the elements of **X** and the elements of **Y** is

$$C(\mathbf{X}, \mathbf{Y}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu}_x)(\mathbf{Y} - \boldsymbol{\mu}_y)' \right\}.$$

Adding a constant has no effect On variances and covariances

It's clear from the definitions:

•
$$V(\mathbf{X}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})' \right\}$$

•
$$C(\mathbf{X}, \mathbf{Y}) = E\left\{ (\mathbf{X} - \boldsymbol{\mu}_x)(\mathbf{Y} - \boldsymbol{\mu}_y)' \right\}$$

So sometimes it is useful to let $\mathbf{a} = -\boldsymbol{\mu}_x$ and $\mathbf{b} = -\boldsymbol{\mu}_y$.

Analogous to $Var(a X) = a^2 Var(X)$

Let **X** be a $p \times 1$ random vector with $E(\mathbf{X}) = \boldsymbol{\mu}$ and $V(\mathbf{X}) = \boldsymbol{\Sigma}$, while $\mathbf{A} = [a_{i,j}]$ is an $r \times p$ matrix of constants. Then

$$V(\mathbf{A}\mathbf{X}) = E\left\{ (\mathbf{A}\mathbf{X} - \mathbf{A}\boldsymbol{\mu})(\mathbf{A}\mathbf{X} - \mathbf{A}\boldsymbol{\mu})' \right\}$$

= $E\left\{ \mathbf{A}(\mathbf{X} - \boldsymbol{\mu}) (\mathbf{A}(\mathbf{X} - \boldsymbol{\mu}))' \right\}$
= $E\left\{ \mathbf{A}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}' \right\}$
= $\mathbf{A}E\{(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'\}\mathbf{A}'$
= $\mathbf{A}V(\mathbf{X})\mathbf{A}'$
= $\mathbf{A}\Sigma\mathbf{A}'$

The Multivariate Normal Distribution

The $p \times 1$ random vector **X** is said to have a *multivariate normal* distribution, and we write $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if **X** has (joint) density

$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right],$$

where $\boldsymbol{\mu}$ is $p \times 1$ and $\boldsymbol{\Sigma}$ is $p \times p$ symmetric and positive definite.

$\boldsymbol{\Sigma}$ positive definite

- Positive definite means that for any non-zero p × 1 vector a, we have a'Σa > 0.
- Since the one-dimensional random variable $Y = \sum_{i=1}^{p} a_i X_i$ may be written as $Y = \mathbf{a}' \mathbf{X}$ and $Var(Y) = V(\mathbf{a}' \mathbf{X}) = \mathbf{a}' \mathbf{\Sigma} \mathbf{a}$, it is natural to require that $\mathbf{\Sigma}$ be positive definite.
- All it means is that every non-zero linear combination of **X** values has a positive variance.
- And recall Σ positive definite is equivalent to Σ^{-1} positive definite.

Analogies (Multivariate normal reduces to the univariate normal when p = 1)

• Univariate Normal

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right]$$

• $E(X) = \mu, V(X) = \sigma^2$

•
$$E(X) = \mu, V(X) =$$

• $\frac{(X-\mu)^2}{\sigma^2} \sim \chi^2(1)$

• Multivariate Normal

•
$$f(\mathbf{x}) = \frac{1}{|\mathbf{\Sigma}|^{\frac{1}{2}}(2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]$$

• $E(\mathbf{X}) = \boldsymbol{\mu}, V(\mathbf{X}) = \boldsymbol{\Sigma}$
• $(\mathbf{X}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \sim \chi^{2}(p)$

More properties of the multivariate normal

- If **c** is a vector of constants, $\mathbf{X} + \mathbf{c} \sim N(\mathbf{c} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- If A is a matrix of constants, $\mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$
- Linear combinations of multivariate normals are multivariate normal.
- All the marginals (dimension less than p) of **X** are (multivariate) normal, but it is possible in theory to have a collection of univariate normals whose joint distribution is not multivariate normal.
- For the multivariate normal, zero covariance implies independence. The multivariate normal is the only continuous distribution with this property.

An easy example If you do it the easy way

Let $\mathbf{X} = (X_1, X_2, X_3)'$ be multivariate normal with

$$\boldsymbol{\mu} = \begin{bmatrix} 1\\0\\6 \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} 2 & 1 & 0\\1 & 4 & 0\\0 & 0 & 2 \end{bmatrix}.$$

Let $Y_1 = X_1 + X_2$ and $Y_2 = X_2 + X_3$. Find the joint distribution of Y_1 and Y_2 .

In matrix terms

$$Y_1 = X_1 + X_2$$
 and $Y_2 = X_2 + X_3$ means $\mathbf{Y} = \mathbf{AX}$

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

 $\mathbf{Y} = \mathbf{A}\mathbf{X} \sim N(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$

You could do it by hand, but

```
> mu = cbind(c(1,0,6))
> Sigma = rbind( c(2,1,0),
                c(1.4.0).
+
                c(0,0,2))
+
> A = rbind(c(1,1,0)),
            c(0,1,1)); A
+
> A %*% mu
                       # E(Y)
     [,1]
[1,] 1
[2,] 6
> A %*% Sigma %*% t(A) # V(Y)
     [,1] [,2]
[1,]
     8
         5
[2,]
    5
            6
```

A couple of things to prove

•
$$(\mathbf{X} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$$

• \overline{X} and S^2 independent

Recall the square root matrix

Covariance matrix $\pmb{\Sigma}$ is real and symmetric matrix, so we have the spectral decomposition

$$\Sigma = \mathbf{P} \mathbf{\Lambda} \mathbf{P}'$$

= $\mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} \mathbf{P}'$
= $\mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{I} \mathbf{\Lambda}^{1/2} \mathbf{P}'$
= $\mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}' \ \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}'$
= $\mathbf{\Sigma}^{1/2} \ \mathbf{\Sigma}^{1/2}$

So $\Sigma^{1/2} = \mathbf{P} \mathbf{\Lambda}^{1/2} \mathbf{P}'$

Square root of an inverse Positive definite \Rightarrow Positive eigenvalues \Rightarrow Inverse exists

$$\mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}' \cdot \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}' = \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}' = \mathbf{\Sigma}^{-1},$$

 \mathbf{SO}

$$\left(\mathbf{\Sigma}^{-1}\right)^{1/2} = \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}'.$$

It's easy to show

•
$$(\Sigma^{-1})^{1/2} = (\Sigma^{1/2})^{-1}$$

• Justifying the notation $\Sigma^{-1/2}$

Now we can show
$$(\mathbf{X} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi^2(p)$$

$$\begin{aligned} \mathbf{Y} &= \mathbf{X} - \boldsymbol{\mu} \quad \sim \quad N\left(\mathbf{0}, \ \boldsymbol{\Sigma}\right) \\ \mathbf{Z} &= \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{Y} \quad \sim \quad N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\ &= \quad N\left(\mathbf{0}, \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma}^{\frac{1}{2}} \ \boldsymbol{\Sigma}^{\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right) \\ &= \quad N\left(\mathbf{0}, \mathbf{I}\right) \end{aligned}$$

So \mathbf{Z} is a vector of p independent standard normals, and

$$\mathbf{Y}' \mathbf{\Sigma}^{-1} \mathbf{Y} = \mathbf{Z}' \mathbf{Z} = \sum_{j=1}^{p} Z_i^2 \sim \chi^2(p) \qquad \blacksquare$$

\overline{X} and S^2 independent

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I}) \qquad \mathbf{Y} = \begin{pmatrix} X_1 - \overline{X} \\ \vdots \\ X_{n-1} - \overline{X} \\ \overline{X} \end{pmatrix} = \mathbf{A}\mathbf{X}$$

Definitions and Basic Results

Multivariate Normal

$\mathbf{Y} = \mathbf{A}\mathbf{X}$ In more detail

$$\begin{pmatrix} 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -\frac{1}{n} & -\frac{1}{n} & \cdots & 1 - \frac{1}{n} & -\frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & \frac{1}{n} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n-1} \\ X_n \end{pmatrix} = \begin{pmatrix} X_1 - \overline{X} \\ X_2 - \overline{X} \\ \vdots \\ X_{n-1} - \overline{X} \\ \overline{X} \end{pmatrix}$$

The argument

$$\mathbf{Y} = \mathbf{A}\mathbf{X} = \begin{pmatrix} X_1 - \overline{X} \\ \vdots \\ X_{n-1} - \overline{X} \\ \overline{X} \end{pmatrix} = \begin{pmatrix} \\ \mathbf{Y}_2 \\ \hline \\ \overline{X} \end{pmatrix}$$

- Y is multivariate normal.
- $Cov\left(\overline{X}, (X_j \overline{X})\right) = 0$ (Exercise)
- So \overline{X} and \mathbf{Y}_2 are independent.
- So \overline{X} and $S^2 = g(\mathbf{Y}_2)$ are independent.

Leads to the t distribution

If

- $Z \sim N(0,1)$ and
- $Y \sim \chi^2(\nu)$ and
- Z and Y are independent, then

$$T = \frac{Z}{\sqrt{Y/\nu}} \sim t(\nu)$$

Random sample from a normal distribution

Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$$
. Then
• $\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} \sim N(0, 1)$ and
• $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ and

• These quantities are independent, so

$$T = \frac{\sqrt{n}(\overline{X} - \mu)/\sigma}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}}$$
$$= \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t(n-1)$$

)

Multivariate normal likelihood For reference

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \frac{1}{|\boldsymbol{\Sigma}|^{\frac{1}{2}} (2\pi)^{\frac{p}{2}}} \exp\left[-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})\right]$$

$$= |\boldsymbol{\Sigma}|^{-n/2} (2\pi)^{-np/2} \exp\left[-\frac{n}{2} \left\{ tr(\boldsymbol{\widehat{\Sigma}}\boldsymbol{\Sigma}^{-1}) + (\overline{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}) \right\},$$

where $\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})'$ is the sample variance-covariance matrix.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf13