Large sample tools¹ STA442/2101 Fall 2013

 $^{^1 \}mathrm{See}$ last slide for copyright information.

Background Reading: Davison's *Statistical models*

• For completeness, look at Section 2.1, which presents some basic applied statistics in an advanced way.

Convergence of random vectors

- Especially see Section 2.2 (Pages 28-37) on convergence.
- Section 3.3 (Pages 77-90) goes more deeply into simulation than we will. At least skim it.

1 Foundations

(5) Convergence of random vectors

Sample Space $\Omega, \omega \in \Omega$

- Observe whether a single individual is male or female: $\Omega = \{F, M\}$
- Pair of individuals; observe their genders in order: $\Omega = \{(F,F), (F,M), (M,F), (M,M)\}$
- Select n people and count the number of females: $\Omega = \{0, \dots, n\}$

For limits problems, the points in Ω are infinite sequences.

Foundations

Random variables are functions from Ω into the set of real numbers

$Pr\{X\in B\}=Pr(\{\omega\in\Omega:X(\omega)\in B\})$

Random Sample $X_1(\omega), \ldots, X_n(\omega)$

- $T = T(X_1, \ldots, X_n)$
- $T = T_n(\omega)$
- Let $n \to \infty$ to see what happens for large samples

Modes of Convergence

- Almost Sure Convergence
- Convergence in Probability
- Convergence in Distribution

Almost Sure Convergence

We say that T_n converges almost surely to T, and write $T_n \xrightarrow{a.s.} T$ if

$$Pr\{\omega : \lim_{n \to \infty} T_n(\omega) = T(\omega)\} = 1.$$

- Acts like an ordinary limit, except possibly on a set of probability zero.
- All the usual rules apply.
- Called convergence with probability one or sometimes strong convergence.

Strong Law of Large Numbers

Let X_1, \ldots, X_n be independent with common expected value μ .

$\overline{X}_n \stackrel{a.s.}{\to} E(X_i) = \mu$

The only condition required for this to hold is the existence of the expected value. Probability is long run relative frequency

Convergence of random vectors

LLN

- Statistical experiment: Probability of "success" is θ
- Carry out the experiment many times independently.
- Code the results $X_i = 1$ if success, $X_i = 0$ for failure, i = 1, 2, ...

Sample proportion of successes converges to the probability of success Recall $X_i = 0$ or 1.

$$E(X_i) = \sum_{x=0}^{1} x \Pr\{X_i = x\}$$

= 0 \cdot (1 - \theta) + 1 \cdot \theta
= \theta

Relative frequency is

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}_{n}\stackrel{a.s.}{\rightarrow}\theta$$

- Estimate almost any probability that's hard to figure out
- Power
- Weather model
- Performance of statistical methods
- Need confidence intervals for estimated probabilities.

Estimating power by simulation

Recall the two test statistics for testing $H_0: \theta = \theta_0$:

•
$$Z_1 = \frac{\sqrt{n}(\overline{Y} - \theta_0)}{\sqrt{\theta_0(1 - \theta_0)}}$$

• $Z_2 = \frac{\sqrt{n}(\overline{Y} - \theta_0)}{\sqrt{\overline{Y}(1 - \overline{Y})}}$

When $\theta \neq \theta_0$, calculating $P\{|Z_2| > z_{\alpha/2}\}$ can be challenging.

- Generate a large number of random data sets under the alternative hypothesis.
- For each data set, test H_0 .
- Estimated power is the proportion of times H_0 is rejected.
- How accurate is the estimate?

Testing $H_0: \theta = 0.50$ when true $\theta = 0.60$ and n = 100Power of \overline{Z}_1 was about 0.52

$$Z_2 = \frac{\sqrt{n}(\overline{Y} - \theta_0)}{\sqrt{\overline{Y}(1 - \overline{Y})}}$$

> # Power by simulation

LLN

> set.seed(9999)

- > Ybar = rbinom(m,size=n,prob=theta)/n # A vector of length m
- > Z2 = sqrt(n)*(Ybar-theta0)/sqrt(Ybar*(1-Ybar)) # Another vector of le
- > power = length(Z2[abs(Z2>1.96)])/m; power

[1] 0.5394

Margin of error for estimated power

Confidence interval for an estimated probability was

$$\overline{Y} \pm z_{\alpha/2} \sqrt{\frac{\overline{Y}(1-\overline{Y})}{n}}$$

```
# How about a 99 percent margin of error
> a = 0.005; z = qnorm(1-a)
> merror = z * sqrt(power*(1-power)/m); merror
[1] 0.0128391
> Lower = power - merror; Lower
```

```
[1] 0.5265609
```

```
> Upper = power + merror; Upper
```

```
[1] 0.5522391
```

Recall the Change of Variables formula: Let Y = g(X)

Convergence of random vectors

$$E(Y) = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy = \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx$$

Or, for discrete random variables

LLN

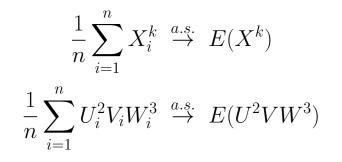
$$E(Y) = \sum_y y \, p_{\scriptscriptstyle Y}(y) = \sum_x g(x) \, p_{\scriptscriptstyle X}(x)$$

This is actually a big theorem, not a definition.

Applying the change of variables formula To approximate E[g(X)]

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i) = \frac{1}{n} \sum_{i=1}^{n} Y_i \stackrel{a.s.}{\to} E(Y)$$
$$= E(g(X))$$

So for example



That is, sample moments converge almost surely to population moments.

Approximate an integral: $\int_{-\infty}^{\infty} h(x) dx$ Where h(x) is a nasty function.

LLN

Let f(x) be a density with f(x) > 0 wherever $h(x) \neq 0$.

$$\int_{-\infty}^{\infty} h(x) dx = \int_{-\infty}^{\infty} \frac{h(x)}{f(x)} f(x) dx$$
$$= E\left[\frac{h(X)}{f(X)}\right]$$
$$= E[g(X)],$$

Convergence of random vectors

So

- Sample X_1, \ldots, X_n from the distribution with density f(x)
- Calculate $Y_i = g(X_i) = \frac{h(X_i)}{f(X_i)}$ for $i = 1, \dots, n$
- Calculate $\overline{Y}_n \stackrel{a.s.}{\to} E[Y] = E[g(X)]$
- Confidence interval for $\mu = E[g(X)]$ is routine,

Convergence in Probability

We say that T_n converges in probability to T, and write $T_n \xrightarrow{P} T$ if for all $\epsilon > 0$,

$$\lim_{n \to \infty} P\{|T_n - T| < \epsilon\} = 1$$

Convergence in probability (say to a constant θ) means no matter how small the interval around θ , for large enough n(that is, for all $n > N_1$) the probability of getting that close to θ is as close to one as you like.

Weak Law of Large Numbers

$$\overline{X}_n \xrightarrow{p} \mu$$

- Almost Sure Convergence implies Convergence in Probability
- Strong Law of Large Numbers implies Weak Law of Large Numbers

Foundations LLN Consistency CLT Convergence of random vectors Delta Method Consistency $T = T(X_1, \ldots, X_n)$ is a statistic estimating a parameter θ

The statistic T_n is said to be *consistent* for θ if $T_n \xrightarrow{P} \theta$.

$$\lim_{n \to \infty} P\{|T_n - \theta| < \epsilon\} = 1$$

The statistic T_n is said to be strongly consistent for θ if $T_n \stackrel{a.s.}{\to} \theta$.

Strong consistency implies ordinary consistency.

Consistency is great but it's not enough.

- It means that as the sample size becomes indefinitely large, you probably get as close as you like to the truth.
- It's the least we can ask. Estimators that are not consistent are completely unacceptable for most purposes.

$$T_n \stackrel{a.s.}{\to} \theta \Rightarrow U_n = T_n + \frac{100,000,000}{n} \stackrel{a.s.}{\to} \theta$$

Consistency of the Sample Variance

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2$$

By SLLN, $\overline{X}_n \stackrel{a.s.}{\to} \mu$ and $\frac{1}{n} \sum_{i=1}^n X_i^2 \stackrel{a.s.}{\to} E(X^2) = \sigma^2 + \mu^2$.

Because the function $g(x, y) = x - y^2$ is continuous,

$$\widehat{\sigma}_n^2 = g\left(\frac{1}{n}\sum_{i=1}^n X_i^2, \overline{X}_n\right) \xrightarrow{a.s.} g(\sigma^2 + \mu^2, \mu) = \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

25/60

Convergence in Distribution Sometimes called *Weak Convergence*, or *Convergence in Law*

Denote the cumulative distribution functions of T_1, T_2, \ldots by $F_1(t), F_2(t), \ldots$ respectively, and denote the cumulative distribution function of T by F(t).

We say that T_n converges in distribution to T, and write $T_n \xrightarrow{d} T$ if for every point t at which F is continuous,

$$\lim_{n \to \infty} F_n(t) = F(t)$$

Univariate Central Limit Theorem

Let X_1, \ldots, X_n be a random sample from a distribution with expected value μ and variance σ^2 . Then

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1)$$

Connections among the Modes of Convergence

•
$$T_n \xrightarrow{a.s.} T \Rightarrow T_n \xrightarrow{p} T \Rightarrow T_n \xrightarrow{d} T.$$

• If a is a constant, $T_n \xrightarrow{d} a \Rightarrow T_n \xrightarrow{p} a$.

Sometimes we say the distribution of the sample mean is approximately normal, or asymptotically normal.

Convergence of random vectors

CLT

- This is justified by the Central Limit Theorem.
- But it does *not* mean that \overline{X}_n converges in distribution to a normal random variable.
- The Law of Large Numbers says that \overline{X}_n converges almost surely (and in probability) to a constant, μ .
- So \overline{X}_n converges to μ in distribution as well.

Why would we say that for large n, the sample mean is approximately $N(\mu, \frac{\sigma^2}{n})$?

Convergence of random vectors

CLT

Have
$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1).$$

$$Pr\{\overline{X}_n \le x\} = Pr\left\{\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le \frac{\sqrt{n}(x - \mu)}{\sigma}\right\}$$
$$= Pr\left\{Z_n \le \frac{\sqrt{n}(x - \mu)}{\sigma}\right\} \approx \Phi\left(\frac{\sqrt{n}(x - \mu)}{\sigma}\right)$$

Suppose Y is exactly $N(\mu, \frac{\sigma^2}{n})$:

$$Pr\{Y \le x\} = Pr\left\{\frac{\sqrt{n}(Y-\mu)}{\sigma} \le \frac{\sqrt{n}(x-\mu)}{\sigma}\right\}$$
$$= Pr\left\{Z_n \le \frac{\sqrt{n}(x-\mu)}{\sigma}\right\} = \Phi\left(\frac{\sqrt{n}(x-\mu)}{\sigma}\right)$$

Convergence of random vectors I

O Definitions (All quantities in boldface are vectors in \mathbb{R}^m unless otherwise stated)

*
$$\mathbf{T}_n \stackrel{a.s.}{\to} \mathbf{T}$$
 means $P\{\omega : \lim_{n \to \infty} \mathbf{T}_n(\omega) = \mathbf{T}(\omega)\} = 1.$
* $\mathbf{T}_n \stackrel{P}{\to} \mathbf{T}$ means $\forall \epsilon > 0, \lim_{n \to \infty} P\{||\mathbf{T}_n - \mathbf{T}|| < \epsilon\} = 1.$
* $\mathbf{T}_n \stackrel{d}{\to} \mathbf{T}$ means for every continuity point \mathbf{t} of $F_{\mathbf{T}}$,
 $\lim_{n \to \infty} F_{\mathbf{T}_n}(\mathbf{t}) = F_{\mathbf{T}}(\mathbf{t}).$

3 If **a** is a vector of constants, $\mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{a} \Rightarrow \mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{a}$.

- Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be independent and identically distributed random vectors with finite first moment, and let \mathbf{X} be a general random vector from the same distribution. Then $\overline{\mathbf{X}}_n \xrightarrow{a.s.} E(\mathbf{X})$.
- Central Limit Theorem: Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\overline{\mathbf{X}}_n \boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean **0** and covariance matrix $\boldsymbol{\Sigma}$.

Convergence of random vectors II

- **6** Slutsky Theorems for Convergence in Distribution:
 - If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \stackrel{d}{\to} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \le m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \stackrel{d}{\to} f(\mathbf{T})$.
 - **2** If $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{d} \mathbf{T}$.
 - **3** If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{d} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{c}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{d}{\to} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{c} \end{array}\right)$$

Convergence of random vectors III

- Slutsky Theorems for Convergence in Probability:
 - If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and if $f : \mathbb{R}^m \to \mathbb{R}^q$ (where $q \le m$) is continuous except possibly on a set C with $P(\mathbf{T} \in C) = 0$, then $f(\mathbf{T}_n) \xrightarrow{P} f(\mathbf{T})$.
 - **2** If $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $(\mathbf{T}_n \mathbf{Y}_n) \xrightarrow{P} 0$, then $\mathbf{Y}_n \xrightarrow{P} \mathbf{T}$.
 - **③** If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \xrightarrow{P} \mathbf{T}$ and $\mathbf{Y}_n \xrightarrow{P} \mathbf{Y}$, then

$$\left(\begin{array}{c} \mathbf{T}_n \\ \mathbf{Y}_n \end{array}\right) \stackrel{P}{\to} \left(\begin{array}{c} \mathbf{T} \\ \mathbf{Y} \end{array}\right)$$

Convergence of random vectors IV

Solution Method (Theorem of Cramér, Ferguson p. 45): Let $g : \mathbb{R}^d \to \mathbb{R}^k$ be such that the elements of $\dot{g}(\mathbf{x}) = \left[\frac{\partial g_i}{\partial x_j}\right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^d$. If \mathbf{T}_n is a sequence of *d*-dimensional random vectors such that $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \dot{g}(\boldsymbol{\theta})\mathbf{T}$. In particular, if $\sqrt{n}(\mathbf{T}_n - \boldsymbol{\theta}) \stackrel{d}{\to} \mathbf{T} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, then $\sqrt{n}(g(\mathbf{T}_n) - g(\boldsymbol{\theta})) \stackrel{d}{\to} \mathbf{Y} \sim N(\mathbf{0}, \dot{g}(\boldsymbol{\theta})\boldsymbol{\Sigma}\dot{g}(\boldsymbol{\theta})')$.

An application of the Slutsky Theorems

• Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} ?(\mu, \sigma^2)$$

• By CLT,
$$Y_n = \sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\rightarrow} Y \sim N(0, \sigma^2)$$

• Let $\hat{\sigma}_n$ be any consistent estimator of σ .

• Then by 6.3,
$$\mathbf{T}_n = \begin{pmatrix} Y_n \\ \widehat{\sigma}_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} Y \\ \sigma \end{pmatrix} = \mathbf{T}$$

• The function f(x, y) = x/y is continuous except if y = 0 so by 6.1,

$$f(\mathbf{T}_n) = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\widehat{\sigma}_n} \stackrel{d}{\to} f(\mathbf{T}) = \frac{Y}{\sigma} \sim N(0, 1)$$

Univariate delta method

In the multivariate Delta Method 8, the matrix $\dot{g}(\boldsymbol{\theta})$ is a Jacobian. The univariate version of the delta method says that if $\sqrt{n} (T_n - \theta) \stackrel{d}{\rightarrow} T$ and g''(x) is continuous at θ , then

$$\sqrt{n} \left(g(T_n) - g(\theta) \right) \xrightarrow{d} g'(\theta) T.$$

When using the Central Limit Theorem, *especially* if there is a $\theta \neq \mu$ in the model, it's safer to write

$$\sqrt{n}\left(g(\overline{X}_n) - g(\mu)\right) \stackrel{d}{\to} g'(\mu) T.$$

and then substitute for μ in terms of θ .

Example: Geometric distribution

Let X_1, \ldots, X_n be a random sample from a distribution, with probability mass function $p(x|\theta) = \theta(1-\theta)^{x-1}$ for $x = 1, 2, \ldots$, where $0 < \theta < 1$.

So,
$$E(X_i) = \frac{1}{\theta}$$
 and $Var(X_i) = \frac{1-\theta}{\theta^2}$.

The maximum likelihood estimator of θ is $\hat{\theta} = \frac{1}{\overline{X}_n}$. Using the Central Limit Theorem and the delta method, find the approximate large-sample distribution of $\hat{\theta}$.

Solution: Geometric distribution $\mu = \frac{1}{\theta}$ and $\sigma^2 = \frac{1-\theta}{\theta^2}$

Have
$$\sqrt{n} \left(\overline{X}_n - \mu\right) \stackrel{d}{\to} T \sim N(0, \frac{1-\theta}{\theta^2})$$

And $\sqrt{n} \left(g(\overline{X}_n) - g(\mu)\right) \stackrel{d}{\to} g'(\mu) T.$
 $g(x) = \frac{1}{x} = x^{-1}$
 $g'(x) = -x^{-2}$
So,

$$\begin{split} \sqrt{n} \left(g(\overline{X}_n) - g(\mu) \right) &= \sqrt{n} \left(\frac{1}{\overline{X}_n} - \frac{1}{\mu} \right) \\ &= \sqrt{n} \left(\widehat{\theta} - \theta \right) \\ &\stackrel{d}{\to} g'(\mu) T = -\frac{1}{\mu^2} T \\ &= -\theta^2 T \sim N \left(0, \theta^4 \cdot \frac{1 - \theta}{\theta^2} \right) \end{split}$$

Foundations

Delta Method

Asymptotic distribution of $\hat{\theta} = \frac{1}{\overline{X}_n}$

Approximate large-sample distribution

Have
$$Y_n = \sqrt{n} \left(\widehat{\theta} - \theta \right) \stackrel{.}{\sim} N(0, \theta^2(1-\theta)).$$

So
$$\frac{Y_n}{\sqrt{n}} = \left(\widehat{\theta} - \theta\right) \stackrel{.}{\sim} N\left(0, \frac{\theta^2(1-\theta)}{n}\right)$$

And $\frac{Y_n}{\sqrt{n}} + \theta = \widehat{\theta} \stackrel{.}{\sim} N\left(\theta, \frac{\theta^2(1-\theta)}{n}\right)$

We'll say that $\hat{\theta} = \frac{1}{\overline{X}_n}$ is approximately $N\left(\theta, \frac{\theta^2(1-\theta)}{n}\right)$.

Another example of $\sqrt{n} \left(g(\overline{X}_n) - g(\mu) \right) \stackrel{d}{\to} g'(\mu) T$ Don't lose your head

Let
$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} ?(\mu, \sigma^2)$$

CLT says $\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} T \sim N(0, \sigma^2)$
Let $g(x) = x^2$

Delta method says
$$\sqrt{n} \left(g(\overline{X}_n) - g(\mu) \right) \stackrel{d}{\to} g'(\mu) T.$$

So $\sqrt{n} \left(\overline{X}_n^2 - \mu^2 \right) \stackrel{d}{\to} 2\mu T \sim N(0, 4\mu^2 \sigma^2)$
Really? What if $\mu = 0$?

If
$$\mu = 0$$
 then $\sqrt{n} \left(\overline{X}_n^2 - \mu^2 \right) = \sqrt{n} \, \overline{X}_n^2 \stackrel{d}{\to} 2\mu T = 0$
 $\Rightarrow \sqrt{n} \, \overline{X}_n^2 \stackrel{p}{\to} 0.$

Faster convergence.

On the other hand ...

Have
$$\sqrt{n} \overline{X}_n^2 \xrightarrow{p} 0$$
, but if (say) $\sigma^2 = 1$,

$$n\overline{X}_n^2 = \left(\sqrt{n}(\overline{X}_n - \mu)\right)^2 \stackrel{d}{\to} Z^2 \sim \chi^2(1)$$

If $\sigma^2 \neq 1$, the target is Gamma $(\alpha = \frac{1}{2}, \beta = 2\sigma)$

A variance-stabilizing transformation An application of the delta method

- Because the Poisson process is such a good model, count data often have approximate Poisson distributions.
- Let $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} \operatorname{Poisson}(\lambda)$

•
$$E(X_i) = Var(X_i) = \lambda$$

•
$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \lambda)}{\sqrt{\overline{X}_n}} \xrightarrow{d} Z \sim N(0, 1)$$

• An approximate large-sample confidence interval for λ is

$$\overline{X}_n \pm z_{\alpha/2} \sqrt{\frac{\overline{X}_n}{n}}$$

• Can we do better?

Variance-stabilizing transformation continued

• CLT says
$$\sqrt{n}(\overline{X}_n - \lambda) \xrightarrow{d} T \sim N(0, \lambda).$$

• Delta method says

$$\sqrt{n} \left(g(\overline{X}_n) - g(\lambda) \right) \xrightarrow{d} g'(\lambda) T = Y \sim N \left(0, g'(\lambda)^2 \lambda \right)$$

• If
$$g'(\lambda) = \frac{1}{\sqrt{\lambda}}$$
, then $Y \sim N(0, 1)$.

An elementary differential equation: $g'(x) = \frac{1}{\sqrt{x}}$ Solve by separation of variables

$$\frac{dg}{dx} = x^{-1/2}$$

$$\Rightarrow dg = x^{-1/2} dx$$

$$\Rightarrow \int dg = \int x^{-1/2} dx$$

$$\Rightarrow g(x) = \frac{x^{1/2}}{1/2} + c = 2x^{1/2} + c$$

We have found

$$\begin{split} \sqrt{n} \left(g(\overline{X}_n) - g(\lambda) \right) &= \sqrt{n} \left(2 \overline{X}_n^{1/2} - 2\lambda^{1/2} \right) \\ &\stackrel{d}{\to} \quad Z \sim N(0, 1) \end{split}$$

So,

- We could say that $\sqrt{\overline{X}_n}$ is asymptotically normal, with (asymptotic) mean $\sqrt{\lambda}$ and (asymptotic) variance $\frac{1}{4n}$.
- This calculation could justify a square root transformation for count data.
- How about a better confidence interval for λ ?

Seeking a better confidence interval for λ

$$\begin{aligned} 1 - \alpha &= \Pr\{-z_{\alpha/2} < Z < z_{\alpha/2}\} \\ &\approx \Pr\{-z_{\alpha/2} < 2\sqrt{n} \left(\overline{X}_n^{1/2} - \lambda^{1/2}\right) < z_{\alpha/2}\} \\ &= \Pr\left\{\sqrt{\overline{X}_n} - \frac{z_{\alpha/2}}{2\sqrt{n}} < \sqrt{\lambda} < \sqrt{\overline{X}_n} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right\} \\ &= \Pr\left\{\left(\sqrt{\overline{X}_n} - \frac{z_{\alpha/2}}{2\sqrt{n}}\right)^2 < \lambda < \left(\sqrt{\overline{X}_n} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right)^2\right\}, \end{aligned}$$

where the last equality is valid provided $\sqrt{\overline{X}_n} - \frac{z_{\alpha/2}}{2\sqrt{n}} \ge 0$.

Compare the confidence intervals

Variance-stabilized CI is

$$\begin{pmatrix} \left(\sqrt{\overline{X}_n} - \frac{z_{\alpha/2}}{2\sqrt{n}}\right)^2 , \left(\sqrt{\overline{X}_n} + \frac{z_{\alpha/2}}{2\sqrt{n}}\right)^2 \end{pmatrix}$$

$$= \left(\overline{X}_n - 2\sqrt{\overline{X}_n} \frac{z_{\alpha/2}}{2\sqrt{n}} + \frac{z_{\alpha/2}^2}{4n} , \overline{X}_n + 2\sqrt{\overline{X}_n} \frac{z_{\alpha/2}}{2\sqrt{n}} + \frac{z_{\alpha/2}^2}{4n} \right)$$

$$= \left(\overline{X}_n - z_{\alpha/2}\sqrt{\frac{\overline{X}_n}{n}} + \frac{z_{\alpha/2}^2}{4n} , \overline{X}_n + z_{\alpha/2}\sqrt{\frac{\overline{X}_n}{n}} + \frac{z_{\alpha/2}^2}{4n} \right)$$

Compare to the ordinary (Wald) CI

$$\left(\overline{X}_n - z_{\alpha/2}\sqrt{\frac{\overline{X}_n}{n}} , \overline{X}_n + z_{\alpha/2}\sqrt{\frac{\overline{X}_n}{n}}\right)$$

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Variance-stabilized CI is just like the ordinary CI

Except shifted to the right by $\frac{z_{\alpha/2}^2}{4n}$.

- If there is a difference in performance, we will see it for small *n*.
- Try some simulations.
- Is the coverage probability closer?

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Try n = 10, True $\lambda = 1$ Illustrate the code first

```
> # Variance stabilized Poisson CT
> n = 10; lambda=1; m=10; alpha = 0.05; set.seed(9999)
> z = qnorm(1-alpha/2)
> cover1 = cover2 = NULL
> for(sim in 1:m)
     ſ
+
    x = rpois(n,lambda); xbar = mean(x); xbar
+
     a1 = xbar - z*sqrt(xbar/n); b1 = xbar + z*sqrt(xbar/n)
+
     shift = z^2/(4*n)
+
    a2 = a1+shift; b2 = b1+shift
+
+
    cover1 = c(cover1,(a1 < lambda && lambda < b1))</pre>
+
    cover2 = c(cover2,(a2 < lambda && lambda < b2))</pre>
+
    } # Next sim
> rbind(cover1,cover2)
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
> mean(cover1)
[1] 0.9
```

50 / 60

Code for Monte Carlo sample size = 10,000 simulations

```
# Now the real simulation
n = 10; lambda=1; m=10000; alpha = 0.05; set.seed(9999)
z = qnorm(1-alpha/2)
cover1 = cover2 = NULL
for(sim in 1:m)
    ł
    x = rpois(n,lambda); xbar = mean(x); xbar
    a1 = xbar - z*sqrt(xbar/n); b1 = xbar + z*sqrt(xbar/n)
    shift = z^2/(4*n)
    a2 = a1+shift; b2 = b1+shift
    cover1 = c(cover1,(a1 < lambda && lambda < b1))</pre>
    cover2 = c(cover2,(a2 < lambda && lambda < b2))</pre>
    } # Next sim
p1 = mean(cover1); p2 = mean(cover2)
# 99 percent margins of error
me1 = qnorm(0.995) * sqrt(p1 * (1-p1)/m); me1 = round(me1,3)
me2 = qnorm(0.995)*sqrt(p1*(1-p1)/m); me2 = round(me2,3)
cat("Coverage of ordinary CI = ",p1,"plus or minus ",me1,"\n")
cat("Coverage of variance-stabilized CI = ",p2,
"plus or minus ",me2,"\n")
```

Delta Method

Results for n = 10, $\lambda = 1$ and 10,000 simulations

Coverage of ordinary CI = 0.9292 plus or minus 0.007

Coverage of variance-stabilized CI = 0.9556 plus or minus 0.007

> # Does CI include 0.95?
> # Look at estimate (too high) minus margin of error.
> p2-me2
[1] 0.9486

Foundations LLN Consistency CLT Convergence of random vectors Delta Method Results for n = 100

 $\lambda = 1$ and 10,000 simulations

Coverage of ordinary CI = 0.9448 plus or minus 0.006

Coverage of variance-stabilized CI = 0.9473 plus or minus 0.006

> p1+me1 [1] 0.9508

The arcsin-square root transformation For proportions

Sometimes, variable values consist of proportions, one for each case.

- For example, cases could be hospitals.
- The variable of interest is the proportion of patients who came down with something *unrelated* to their reason for admission hospital-acquired infection.
- This is an example of *aggregated data*.

The advice you often get

When a proportion is the response variable in a regression, use the *arcsin square root* transformation.

That is, if the proportions are P_1, \ldots, P_n , let

$$Y_i = \sin^{-1}(\sqrt{P_i})$$

and use the Y_i values in your regression.

```
Why?
```

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

It's a variance-stabilizing transformation.

- The proportions are little sample means: $P_i = \frac{1}{m} \sum_{j=1}^m X_{i,j}$
- Drop the *i* for now.
- X_1, \ldots, X_m may not be independent, but let's pretend.
- $P = \overline{X}_m$
- Approximately, $\overline{X}_m \sim N\left(\theta, \frac{\theta(1-\theta)}{m}\right)$
- Normality is good.
- Variance that depends on the mean θ is not so good.

Apply the delta method

Central Limit Theorem says

$$\sqrt{m}(\overline{X}_m - \theta) \stackrel{d}{\to} T \sim N\left(0, \theta(1 - \theta)\right)$$

Delta method says

$$\sqrt{m} \left(g(\overline{X}_m) - g(\theta) \right) \xrightarrow{d} Y \sim N \left(0, g'(\theta)^2 \theta(1-\theta) \right).$$

Want a function g(x) with

$$g'(x) = \frac{1}{\sqrt{x(1-x)}}$$

Try $g(x) = \sin^{-1}(\sqrt{x})$.

Foundations LLN Consistency CLT Convergence of random vectors Delta Method

Chain rule to get $\frac{d}{dx}\sin^{-1}(\sqrt{x})$

"Recall" that
$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$
. Then,

$$\frac{d}{dx}\sin^{-1}(\sqrt{x}) = \frac{1}{\sqrt{1-\sqrt{x^2}}} \cdot \frac{1}{2}x^{-1/2}$$
$$= \frac{1}{2\sqrt{x(1-x)}}.$$

Conclusion:

$$\sqrt{m}\left(\sin^{-1}\left(\sqrt{\overline{X}_m}\right) - \sin^{-1}\left(\sqrt{\theta}\right)\right) \xrightarrow{d} Y \sim N\left(0, \frac{1}{4}\right)$$

So the arcsin-square root transformation stabilizes the variance

Convergence of random vectors

- Y ~ N(0, ¹/₄) means the variance no longer depends on the probability that the proportion is estimating.
- Does not quite *standardize* the proportion, but that's okay for regression.
- Potentially useful for non-aggregated data too.
- If we want to do a regression on aggregated data, the point we have reached is that approximately,

$$Y_i \sim N\left(\sin^{-1}\left(\sqrt{\theta_i}\right), \frac{1}{4m_i}\right)$$

That was fun, but it was all univariate.

Because

- The multivariate CLT establishes convergence to a multivariate normal, and
- Vectors of MLEs are approximately multivariate normal for large samples, and
- The multivariate delta method can yield the asymptotic distribution of useful functions of the MLE vector,

We need to look at random vectors and the multivariate normal distribution.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LAT_EX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/appliedf13