\documentclass[10pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb %\usepackage{graphicx} % To include pdf files! \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \usepackage{fullpage} % Good for US Letter paper %\usepackage{fancyheadings} %\pagestyle{fancy} %\cfoot{Page \thepage {} of 2} %\headrulewidth=0pt % Otherwise there's a rule under the header \pagestyle{empty} % No page numbers \begin{document} %\enlargethispage*{1000 pt} \begin{center} {\Large \textbf{STA 2101/442 Formulas}}\\ % Version 3 \vspace{1 mm} \end{center} \noindent \renewcommand{\arraystretch}{2.0} \begin{tabular}{lll} $V(\mathbf{Y}) = E\left\{(\mathbf{Y}-\boldsymbol{\mu})(\mathbf{Y}-\boldsymbol{\mu})^\prime\right\}$ & ~~~~~ & $C(\mathbf{X,Y}) = E\left\{ (\mathbf{X}-\boldsymbol{\mu}_x) (\mathbf{Y}-\boldsymbol{\mu}_y)^\prime\right\}$ \\ \multicolumn{3}{l}{If $\lim_{n \rightarrow \infty} E(T_n) = \theta$ and $\lim_{n \rightarrow \infty} Var(T_n) = 0$, then $T_n \stackrel{P}{\rightarrow} \theta$} \\ $\mathbf{Y}_n = \sqrt{n}(\overline{\mathbf{Y}}_n-\boldsymbol{\mu}) \stackrel{d}{\rightarrow} \mathbf{Y} \sim N(\mathbf{0},\boldsymbol{\Sigma})$ & ~~~~~ & $\sqrt{n}(g(\overline{\mathbf{Y}}_n)-g(\boldsymbol{\mu})) \stackrel{d}{\rightarrow} \mbox{\.{g}} (\boldsymbol{\mu}) \mathbf{Y}$, ~~\.{g}$(\mathbf{x}) = \left[ \frac{\partial g_i}{\partial x_j} \right]_{k \times d}$ \\ If $\mathbf{Y} \sim N_p(\boldsymbol{\mu},\boldsymbol{\Sigma} )$, then $\mathbf{AY} \sim N_r(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^\prime )$ & ~~~~~ & and $(\mathbf{Y}-\boldsymbol{\mu})^\prime \boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\boldsymbol{\mu}) \sim \chi^2 (p)$ \\ \multicolumn{3}{l}{$L(\boldsymbol{\mu,\Sigma}) = |\boldsymbol{\Sigma}|^{-n/2} (2\pi)^{-np/2} \exp -\frac{n}{2}\left\{ tr(\boldsymbol{\widehat{\Sigma}\Sigma}^{-1}) + (\overline{\mathbf{y}}-\boldsymbol{\mu})^\prime \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{y}}-\boldsymbol{\mu}) \right\}$, where $\boldsymbol{\widehat{\Sigma}} = \frac{1}{n}\sum_{i=1}^n (\mathbf{y}_i-\overline{\mathbf{y}}) (\mathbf{y}_i-\overline{\mathbf{y}})^\prime $} \\ $P(n_1, \ldots, n_c) = \binom{n}{n_1~\cdots~n_c} \pi_1^{n_1} \cdots \pi_c^{n_c}$ & ~~~~~ & $L(\boldsymbol{\pi}) = \prod_{i=1}^n \pi_1^{y_{i,1}} \pi_2^{y_{i,2}} \cdots \pi_c^{y_{i,c}} = \pi_1^{n_1} \pi_2^{n_2} \cdots \pi_c^{n_c}$ \\ $\boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) = \left[E[-\frac{\partial^2}{\partial\theta_i\partial\theta_j} \log f(Y;\boldsymbol{\theta})]\right]$ & ~~~~~ & $ \boldsymbol{\mathcal{J}}_n(\boldsymbol{\theta}) = \left[\frac{1}{n}\sum_{i=1}^n -\frac{\partial^2}{\partial\theta_i\partial\theta_j} \log f(Y_i;\boldsymbol{\theta}) \right]$ \\ $\sqrt{n}(\widehat{\boldsymbol{\theta}}_n-\boldsymbol{\theta}) \stackrel{d}{\rightarrow} \mathbf{T} \sim N_k\left(\mathbf{0}, \boldsymbol{\mathcal{I}}(\boldsymbol{\theta})^{-1}\right )$ & ~~~~~ & $\widehat{\mathbf{V}}_n = \frac{1}{n} \boldsymbol{\mathcal{J}}_n(\widehat{\boldsymbol{\theta}}_n)^{-1} = \left( \left[-\frac{\partial^2} {\partial\theta_i\partial\theta_j} \ell(\boldsymbol{\theta},\mathbf{Y}) \right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_n} \right)^{-1}$ \\ $G^2 = -2 \log \left( \frac{\max_{\theta \in \Theta_0} L(\theta)} {\max_{\theta \in \Theta} L(\theta)} \right)$ & ~~~~~ & $W_n = (\mathbf{L}\widehat{\boldsymbol{\theta}}_n-\mathbf{h})^\prime \left(\mathbf{L} \widehat{\mathbf{V}}_n \mathbf{L}^\prime\right)^{-1} (\mathbf{L}\widehat{\boldsymbol{\theta}}_n-\mathbf{h})$ \\ $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$ & ~~~~~ & $\boldsymbol{\epsilon} \sim N_n(\mathbf{0},\sigma^2\mathbf{I}_n)$ \\ $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^\prime \mathbf{X})^{-1} \mathbf{X}^\prime \mathbf{Y} $ & ~~~~~ & $\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{HY}$ \\ $\mathbf{H} = \mathbf{X}(\mathbf{X}^\prime \mathbf{X})^{-1} \mathbf{X}^\prime$ & ~~~~~ & $\mathbf{e} = \mathbf{Y} - \widehat{\mathbf{Y}}$ \\ $\widehat{\boldsymbol{\beta}} \sim N_p\left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^\prime \mathbf{X})^{-1}\right)$ & ~~~~~ & $SSE/\sigma^2 \sim \chi^2(n-p)$ \\ $T = \frac{Z}{\sqrt{W/\nu}} \sim t(\nu)$ & ~~~~~ & $F = \frac{W_1/\nu_1}{W_2/\nu_2} \sim F(\nu_1,\nu_2)$ \\ \multicolumn{3}{l}{$F = \frac{(\mathbf{L}\widehat{\boldsymbol{\beta}}-\mathbf{h})^\prime (\mathbf{L}(\mathbf{X}^\prime \mathbf{X})^{-1}\mathbf{L}^\prime)^{-1} (\mathbf{L}\widehat{\boldsymbol{\beta}}-\mathbf{h})} {r \, MSE_F} = \frac{(SSR_F-SSR_R)/r}{MSE_F} = \left(\frac{n-p}{r}\right) \left(\frac{a}{1-a}\right)$, where $a = \frac{R^2_F-R^2_R}{1-R^2_R} = \frac{rF}{n-p+rF}$} \\ $\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_{i,1} + \cdots + \beta_{p-1} x_{i,p-1}$ & ~~~~~ & \\ \end{tabular} \renewcommand{\arraystretch}{1.0} \vspace{10mm} \begin{verbatim} > df = 1:8 > CriticalValue = qchisq(0.95,df) > round(rbind(df,CriticalValue),3) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] df 1.000 2.000 3.000 4.000 5.00 6.000 7.000 8.000 CriticalValue 3.841 5.991 7.815 9.488 11.07 12.592 14.067 15.507 \end{verbatim} \pagebreak \begin{center} {\large \textbf{More large sample tools}}\\ \vspace{1 mm} \end{center} %{\footnotesize \begin{enumerate} \item Definitions (All quantities in boldface are vectors in $\mathbb{R}^m$ unless otherwise stated ) \begin{enumerate} \item[$\star$] $ \mathbf{T}_n \stackrel{a.s.}{\rightarrow} \mathbf{T}$ means $P\{\omega:\, \lim_{n \rightarrow \infty} \mathbf{T}_n(\omega) = \mathbf{T}(\omega)\}=1$. \item[$\star$] $ \mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{T}$ means $\forall \epsilon>0,\,\lim_{n \rightarrow \infty} P\{||\mathbf{T}_n-\mathbf{T}||<\epsilon \}=1$. \item[$\star$] $ \mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{T}$ means for every continuity point $\mathbf{t}$ of $F_\mathbf{T}$, $\lim_{n \rightarrow \infty}F_{\mathbf{T}_n}(\mathbf{t}) = F_\mathbf{T}(\mathbf{t})$. \end{enumerate} \item $ \mathbf{T}_n \stackrel{a.s.}{\rightarrow} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{T} \Rightarrow \mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{T} $. \item If $\mathbf{a}$ is a vector of constants, $ \mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{a} \Rightarrow \mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{a}$. \item Strong Law of Large Numbers (SLLN): Let $\mathbf{X}_1, \ldots \mathbf{X}_n$ be independent and identically distributed random vectors with finite first moment, and let $\mathbf{X}$ be a general random vector from the same distribution. Then $ \overline{\mathbf{X}}_n \stackrel{a.s.}{\rightarrow} E(\mathbf{X})$. \item Central Limit Theorem: Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. random vectors with expected value vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Then $\sqrt{n}(\overline{\mathbf{X}}_n-\boldsymbol{\mu})$ converges in distribution to a multivariate normal with mean \textbf{0} and covariance matrix $\boldsymbol{\Sigma}$. \item \label{slutd} Slutsky Theorems for Convergence in Distribution: \begin{enumerate} \item \label{slutcond} If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{T}$ and if $f:\,\mathbb{R}^m \rightarrow \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set $C$ with $P(\mathbf{T} \in C)=0$, then $f(\mathbf{T}_n) \stackrel{d}{\rightarrow} f(\mathbf{T})$. \item \label{slutdiffd} If $\mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{T}$ and $(\mathbf{T}_n - \mathbf{Y}_n) \stackrel{P}{\rightarrow} 0$, then $\mathbf{Y}_n \stackrel{d}{\rightarrow} \mathbf{T}$. \item \label{slutstackd} If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \stackrel{d}{\rightarrow} \mathbf{T}$ and $\mathbf{Y}_n \stackrel{P}{\rightarrow} \mathbf{c}$, then \begin{displaymath} \left( \begin{array}{cc} \mathbf{T}_n \\ \mathbf{Y}_n \end{array} \right) \stackrel{d}{\rightarrow} \left( \begin{array}{cc} \mathbf{T} \\ \mathbf{c} \end{array} \right) \end{displaymath} \end{enumerate} \item \label{slutp} Slutsky Theorems for Convergence in Probability: \begin{enumerate} \item \label{slutconp} If $\mathbf{T}_n \in \mathbb{R}^m$, $\mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{T}$ and if $f:\,\mathbb{R}^m \rightarrow \mathbb{R}^q$ (where $q \leq m$) is continuous except possibly on a set $C$ with $P(\mathbf{T} \in C)=0$, then $f(\mathbf{T}_n) \stackrel{P}{\rightarrow} f(\mathbf{T})$. \item \label{slutdiffp} If $\mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{T}$ and $(\mathbf{T}_n - \mathbf{Y}_n) \stackrel{P}{\rightarrow} 0$, then $\mathbf{Y}_n \stackrel{P}{\rightarrow} \mathbf{T}$. \item \label{slutstackp} If $\mathbf{T}_n \in \mathbb{R}^d$, $\mathbf{Y}_n \in \mathbb{R}^k$, $\mathbf{T}_n \stackrel{P}{\rightarrow} \mathbf{T}$ and $\mathbf{Y}_n \stackrel{P}{\rightarrow} \mathbf{Y}$, then \begin{displaymath} \left( \begin{array}{cc} \mathbf{T}_n \\ \mathbf{Y}_n \end{array} \right) \stackrel{P}{\rightarrow} \left( \begin{array}{cc} \mathbf{T} \\ \mathbf{Y} \end{array} \right) \end{displaymath} \end{enumerate} \item \label{delta} Delta Method (Theorem of Cram\'{e}r, Ferguson p. 45): Let $g: \mathbb{R}^d \rightarrow \mathbb{R}^k$ be such that the elements of \.{g}$(\mathbf{x}) = \left[ \frac{\partial g_i}{\partial x_j} \right]_{k \times d}$ are continuous in a neighborhood of $\boldsymbol{\theta} \in \mathbb{R}^d$. If $\mathbf{T}_n$ is a sequence of $d$-dimensional random vectors such that $\sqrt{n}(\mathbf{T}_n-\boldsymbol{\theta}) \stackrel{d}{\rightarrow} \mathbf{T}$, then $\sqrt{n}(g(\mathbf{T}_n)-g(\boldsymbol{\theta})) \stackrel{d}{\rightarrow} \mbox{\.{g}} (\boldsymbol{\theta}) \mathbf{T}$. In particular, if $\sqrt{n}(\mathbf{T}_n-\boldsymbol{\theta}) \stackrel{d}{\rightarrow} \mathbf{T} \sim N(\mathbf{0},\mathbf{\Sigma})$, then $\sqrt{n}(g(\mathbf{T}_n)-g(\boldsymbol{\theta})) \stackrel{d}{\rightarrow} \mathbf{Y} \sim N(\mathbf{0}, \mbox{\.{g}}(\boldsymbol{\theta})\mathbf{\Sigma}\mbox{\.{g}}(\boldsymbol{\theta}) ^\prime)$. \end{enumerate} \noindent \begin{center}\begin{tabular}{l} \hspace{6.5in} \\ \hline \end{tabular}\end{center} This formula sheet was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistics, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \href{http://www.utstat.toronto.edu/~brunner/oldclass/appliedf13} {\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/appliedf13}} \end{document} $G^2 = 2 \sum_{j=1}^c n_j\log \left(\frac{n_j}{\widehat{\mu}_j}\right)$, with $\widehat{\mu}_j = n\widehat{\pi}_j$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add this row next. % From 2012, but removed \noindent \begin{tabular}{cccl} $Z_1 = \frac{\sqrt{n}(\overline{Y}_n-\pi_0)}{\sqrt{\pi_0(1-\pi_0)}}$ & $Z_2 = \frac{\sqrt{n}(\overline{Y}_n-\pi_0)}{\sqrt{\overline{Y}_n(1-\overline{Y}_n)}}$ & $\overline{Y}_n \pm z_{\alpha/2}\sqrt{\frac{\overline{Y}_n(1-\overline{Y}_n)}{n}}$ & \begin{minipage}{3in} \begin{verbatim} > qnorm(0.975) [1] 1.959964 > qnorm(0.995) [1] 2.575829 \end{verbatim} \end{minipage} \end{tabular} \vspace{3mm} \noindent ~~If $\mathbf{Y} \sim N_p(\boldsymbol{\mu},\boldsymbol{\Sigma} )$, then $\mathbf{AY} \sim N_r(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^\prime )$. \vspace{3mm} \noindent ~~If $E(\mathbf{Y})=\boldsymbol{\mu}$, then $V(\mathbf{Y})$ is defined by $V(\mathbf{Y}) = E\left\{(\mathbf{Y}-\boldsymbol{\mu})(\mathbf{Y}-\boldsymbol{\mu})^\prime\right\}$. \vspace{3mm} \multicolumn{3}{l}{If $X \sim N(\mu,\sigma^2)$, then $\frac{X^2}{\sigma^2} \sim \chi^2(1,\lambda)$, with $\lambda = \frac{\mu^2}{\sigma^2}$} \\ $\phi = \frac{(\mathbf{L}\boldsymbol{\beta}-\mathbf{h})^\prime (\mathbf{L}(\mathbf{X}^\prime \mathbf{X})^{-1}\mathbf{L}^\prime)^{-1} (\mathbf{L}\boldsymbol{\beta}-\mathbf{h})} {\sigma^2}$ & ~~~~~ & \\ $f(y|\theta,\phi) = \exp\left\{ \frac{y\theta-b(\theta)}{\phi} + c(y,\phi)\right\}$ & ~~~~~ & $\theta = g(\mu) = \eta = \mathbf{x}^\prime\boldsymbol{\beta}$ \\