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Definitions and Basic Results Multivariate Normal

Background Reading: Davison’s Statistical models

Section 3.2 is on the normal model, including the
multivariate normal.

Pages 62-68 are on the univariate normal, leading to the t
and F distributions.

Section 3.2.3 is multivariate, starting with some basic
results that apply to all multivariate distributions.

Mild notational differences, especially Ω instead of Σ for
the covariance matrix.
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Definitions and Basic Results Multivariate Normal

Overview

1 Definitions and Basic Results

2 Multivariate Normal
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Definitions and Basic Results Multivariate Normal

Random Vectors and Matrices

A random matrix is just a matrix of random variables. Their
joint probability distribution is the distribution of the random
matrix. Random matrices with just one column (say, p× 1)
may be called random vectors.
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Definitions and Basic Results Multivariate Normal

Expected Value

The expected value of a matrix is defined as the matrix of
expected values. Denoting the p× c random matrix X by [Xi,j ],

E(X) = [E(Xi,j)].
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Definitions and Basic Results Multivariate Normal

Immediately we have natural properties like

E(X + Y) = E([Xi,j ] + [Yi,j ])

= [E(Xi,j + Yi,j)]

= [E(Xi,j) + E(Yi,j)]

= [E(Xi,j)] + [E(Yi,j)]

= E(X) + E(Y).
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Definitions and Basic Results Multivariate Normal

Moving a constant through the expected value sign

Let A = [ai,j ] be an r × p matrix of constants, while X is still a
p× c random matrix. Then

E(AX) = E

([
p∑

k=1

ai,kXk,j

])

=

[
E

(
p∑

k=1

ai,kXk,j

)]

=

[
p∑

k=1

ai,kE(Xk,j)

]
= AE(X).

Similar calculations yield E(AXB) = AE(X)B.
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Definitions and Basic Results Multivariate Normal

Variance-Covariance Matrices

Let X be a p× 1 random vector with E(X) = µ. The
variance-covariance matrix of X (sometimes just called the
covariance matrix), denoted by V (X), is defined as

V (X) = E
{

(X− µ)(X− µ)′
}
.

8 / 30



Definitions and Basic Results Multivariate Normal

V (X) = E {(X− µ)(X− µ)′}

V (X) = E


 X1 − µ1

X2 − µ2

X3 − µ3

 [ X1 − µ1 X2 − µ2 X3 − µ3
]

= E


 (X1 − µ1)2 (X1 − µ1)(X2 − µ2) (X1 − µ1)(X3 − µ3)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 (X2 − µ2)(X3 − µ3)
(X3 − µ3)(X1 − µ1) (X3 − µ3)(X2 − µ2) (X3 − µ3)2


=

 E{(X1 − µ1)2} E{(X1 − µ1)(X2 − µ2)} E{(X1 − µ1)(X3 − µ3)}
E{(X2 − µ2)(X1 − µ1)} E{(X2 − µ2)2} E{(X2 − µ2)(X3 − µ3)}
E{(X3 − µ3)(X1 − µ1)} E{(X3 − µ3)(X2 − µ2)} E{(X3 − µ3)2}



=

 V (X1) Cov(X1, X2) Cov(X1, X3)
Cov(X1, X2) V (X2) Cov(X2, X3)
Cov(X1, X3) Cov(X2, X3) V (X3)

 .

So, the covariance matrix V (X) is a p× p symmetric matrix with variances on the

main diagonal and covariances on the off-diagonals.
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Definitions and Basic Results Multivariate Normal

Matrix of covariances between two random vectors

Let X be a p× 1 random vector with E(X) = µx and let Y be
a q × 1 random vector with E(Y) = µy. The p× q matrix of
covariances between the elements of X and the elements of Y is

C(X,Y) = E
{

(X− µx)(Y − µy)
′} .
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Definitions and Basic Results Multivariate Normal

Adding a constant has no effect
On variances and covariances

V (X + a) = V (X)

C(X + a,Y + b) = C(X,Y)

It’s clear from the definitions:

V (X) = E {(X− µ)(X− µ)′}
C(X,Y) = E

{
(X− µx)(Y − µy)

′}

So sometimes it is useful to let a = −µx and b = −µy.
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Definitions and Basic Results Multivariate Normal

Analogous to V ar(aX) = a2 V ar(X)

Let X be a p× 1 random vector with E(X) = µ and V (X) = Σ,
while A = [ai,j ] is an r × p matrix of constants. Then

V (AX) = E
{

(AX−Aµ)(AX−Aµ)′
}

= E
{
A(X− µ) (A(X− µ))′

}
= E

{
A(X− µ)(X− µ)′A′

}
= AE{(X− µ)(X− µ)′}A′

= AV (X)A′

= AΣA′
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Definitions and Basic Results Multivariate Normal

The Multivariate Normal Distribution

The p×1 random vector X is said to have a multivariate normal
distribution, and we write X ∼ N(µ,Σ), if X has (joint) density

f(x) =
1

|Σ|
1
2 (2π)

p
2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
,

where µ is p× 1 and Σ is p× p symmetric and positive definite.
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Definitions and Basic Results Multivariate Normal

Σ positive definite

Positive definite means that for any non-zero p× 1 vector
a, we have a′Σa > 0.

Since the one-dimensional random variable Y =
∑p

i=1 aiXi

may be written as Y = a′X and V ar(Y ) = V (a′X) = a′Σa,
it is natural to require that Σ be positive definite.

All it means is that every non-zero linear combination of X
values has a positive variance.

And recall Σ positive definite is equivalent to Σ−1 positive
definite.
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Definitions and Basic Results Multivariate Normal

Analogies
(Multivariate normal reduces to the univariate normal when p = 1)

Univariate Normal

f(x) = 1
σ
√
2π

exp
[
− 1

2
(x−µ)2
σ2

]
E(X) = µ, V (X) = σ2

(X−µ)2
σ2 ∼ χ2(1)

Multivariate Normal

f(x) = 1

|Σ|
1
2 (2π)

p
2

exp
[
− 1

2 (x− µ)′Σ−1(x− µ)
]

E(X) = µ, V (X) = Σ
(X− µ)′Σ−1(X− µ) ∼ χ2(p)
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Definitions and Basic Results Multivariate Normal

More properties of the multivariate normal

If c is a vector of constants, X + c ∼ N(c + µ,Σ)

If A is a matrix of constants, AX ∼ N(Aµ,AΣA′)

Linear combinations of multivariate normals are
multivariate normal.

All the marginals (dimension less than p) of X are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.
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Definitions and Basic Results Multivariate Normal

An easy example
If you do it the easy way

Let X = (X1, X2, X3)′ be multivariate normal with

µ =

 1
0
6

 and Σ =

 2 1 0
1 4 0
0 0 2

 .
Let Y1 = X1 +X2 and Y2 = X2 +X3. Find the joint
distribution of Y1 and Y2.
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Definitions and Basic Results Multivariate Normal

In matrix terms

Y1 = X1 +X2 and Y2 = X2 +X3 means Y = AX

[
Y1

Y2

]
=

[
1 1 0
0 1 1

] X1

X2

X3



Y = AX ∼ N(Aµ,AΣA′)
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Definitions and Basic Results Multivariate Normal

You could do it by hand, but

> mu = cbind(c(1,0,6))

> Sigma = rbind( c(2,1,0),

+ c(1,4,0),

+ c(0,0,2) )

> A = rbind( c(1,1,0),

+ c(0,1,1) ); A

> A %*% mu # E(Y)

[,1]

[1,] 1

[2,] 6

> A %*% Sigma %*% t(A) # V(Y)

[,1] [,2]

[1,] 8 5

[2,] 5 6
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Definitions and Basic Results Multivariate Normal

A couple of things to prove

(X− µ)′Σ−1(X− µ) ∼ χ2(p)

X and S2 independent
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Definitions and Basic Results Multivariate Normal

Recall the square root matrix

Covariance matrix Σ is real and symmetric matrix, so we have
the spectral decomposition

Σ = PΛP′

= PΛ1/2Λ1/2P′

= PΛ1/2 I Λ1/2P′

= PΛ1/2P′ PΛ1/2P′

= Σ1/2 Σ1/2

So Σ1/2 = PΛ1/2P′
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Definitions and Basic Results Multivariate Normal

Square root of an inverse
Positive definite ⇒ Positive eigenvalues ⇒ Inverse exists

PΛ−1/2P′ · PΛ−1/2P′ = PΛ−1P′ = Σ−1,

so(
Σ−1

)1/2
= PΛ−1/2P′.

It’s easy to show(
Σ−1

)1/2
=
(
Σ1/2

)−1

Justifying the notation Σ−1/2
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Definitions and Basic Results Multivariate Normal

Now we can show (X− µ)′Σ−1(X− µ) ∼ χ2(p)

Y = X− µ ∼ N (0, Σ)

Z = Σ−
1
2 Y ∼ N

(
0,Σ−

1
2 ΣΣ−

1
2

)
= N

(
0,Σ−

1
2 Σ

1
2 Σ

1
2 Σ−

1
2

)
= N (0, I)

So Z is a vector of p independent standard normals, and

Y′Σ−1Y = Z′Z =

p∑
j=1

Z2
i ∼ χ2(p) �
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Definitions and Basic Results Multivariate Normal

X and S2 independent

X =

 X1
...
Xn

 ∼ N (µ1, σ2I
)

Y =


X1 −X

...

Xn−1 −X

X

 = AX
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Definitions and Basic Results Multivariate Normal

Y = AX
In more detail



1− 1
n − 1

n · · · − 1
n − 1

n

− 1
n 1− 1

n · · · − 1
n − 1

n
...

...
...

...
...

− 1
n − 1

n · · · 1− 1
n − 1

n

1
n

1
n · · · 1

n
1
n





X1

X2
...

Xn−1

Xn


=



X1 −X

X2 −X
...

Xn−1 −X

X
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Definitions and Basic Results Multivariate Normal

The argument

Y = AX =


X1 −X

...

Xn−1 −X

X

 =


Y2

X


Y is multivariate normal.

Cov
(
X, (Xj −X)

)
= 0 (Exercise)

So X and Y2 are independent.

So X and S2 = g(Y2) are independent. �
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Definitions and Basic Results Multivariate Normal

Leads to the t distribution

If

Z ∼ N(0, 1) and

Y ∼ χ2(ν) and

Z and Y are independent, then

T =
Z√
Y/ν

∼ t(ν)
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Definitions and Basic Results Multivariate Normal

Random sample from a normal distribution

Let X1, . . . , Xn
i.i.d.∼ N(µ, σ2). Then

√
n(X−µ)
σ ∼ N(0, 1) and

(n−1)S2

σ2 ∼ χ2(n− 1) and

These quantities are independent, so

T =

√
n(X − µ)/σ√

(n−1)S2

σ2 /(n− 1)

=

√
n(X − µ)

S
∼ t(n− 1)
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Definitions and Basic Results Multivariate Normal

Multivariate normal likelihood
For reference

L(µ,Σ) =
n∏

i=1

1

|Σ| 12 (2π)
p
2

exp

[
−1

2
(xi − µ)′Σ−1(xi − µ)

]

= |Σ|−n/2(2π)−nk/2 exp−n
2

{
tr(Σ̂Σ

−1
) + (x− µ)′Σ−1(x− µ)

}
,

where Σ̂ = 1
n

∑n
i=1(xi − x)(xi − x)′ is the sample

variance-covariance matrix.
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Definitions and Basic Results Multivariate Normal

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/appliedf12
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