Poisson Regression

The Training Data

Office workers at a large insurance company are randomly assigned to one of 3 computer use training programmes, and their number of calls to IT support during the following month is recorded. Additional information on each worker includes years of experience and score on a computer literacy test (out of 100). It is reasonable to model calls to IT support as a Poisson process, and the question is whether training programme affects the rate of the process.

Could test $\mathrm{H}_{0}: \lambda_{1}=\lambda_{2}=\lambda_{3}$ with a likelihood ratio test, but \ldots

```
> train =
read.table("http://fisher.utstat.utoronto.ca/~brunner/appliedf12/data/train
ing.data")
> train[1:4,]
    Program Experience Score Support
1 A 3.92 60 6
2 A 5.83 64 3
3 A 0.92 51 8
4 A 8.50 58 2
> attach(train)
> table(Support)
Support
    0
    6 27 42 61 70 39 23 17 9 2 2 1 1
> aggregate(Support,by=list(Program),FUN=mean)
    Group.1 x
1 A 4.07
2 B 3.47
C 4.05
> aggregate(Support,by=list(Program),FUN=length)
    Group.1 x
1 A 100
2 B 100
C C 100
>
```

```
> model1 = glm(Support \(\sim\) Program, family=poisson)
```

> summary(model1)

Call:
glm(formula = Support ~ Program, family = poisson)
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.8531	-0.6319	-0.0348	0.4552	3.1765

Coefficients:

Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $1.4036430 .049567 \quad 28.318 \quad<2 e-16$
ProgramB -0.159488 0.073066-2.183 0.0291 *
ProgramC -0.004926 0.070185 $-0.070 \quad 0.9440$
--
Signif. codes: 0 ‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 330.39 on 299 degrees of freedom
Residual deviance: 324.26 on 297 degrees of freedom
AIC: 1250.2

Number of Fisher Scoring iterations: 4
> anova(model1,test="Chisq") \# Overall likelihood ratio test Analysis of Deviance Table

Model: poisson, link: log
Response: Support
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>$ Chi)
$\begin{array}{lll}\text { NULL } & 299 & 330.39\end{array}$
Program $26.122 \quad 297 \quad 324.26 \quad 0.04684$ *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ $0.05^{\prime} .0 .1$ ' 1

```
> # Include covariates
> model2 = glm(Support ~ Score+Experience+Program, family=poisson)
> summary(model2)
```

Call:
glm(formula = Support \sim Score + Experience + Program, family = poisson)
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.9625	-0.6957	-0.1018	0.5362	2.9386

Coefficients:

Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $1.9927440 .15922312 .515<2 e-16$
Score $-0.009205 \quad 0.003019-3.049 \quad 0.00230$ **
$\begin{array}{lllll}\text { Experience } & -0.028014 & 0.010317 & -2.715 & 0.00662 * * \\ \text { P* }\end{array}$
ProgramB -0.170519 $0.073163-2.3310 .01977^{*}$
ProgramC -0.007833 0.070218 -0.1120 .91118

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 330.39 on 299 degrees of freedom
Residual deviance: 305.90 on 295 degrees of freedom
AIC: 1235.8
Number of Fisher Scoring iterations: 4
> anova(model2,test="Chisq") \# Sequential
Analysis of Deviance Table

Model: poisson, link: log
Response: Support
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>C h i)$
NULL
299330.39

Score $1 \quad 9.9766$
Experience 17.6333
$298320.410 .001585^{* *}$
Program $26.8767 \quad 295305.900 .032118$ *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1

```
> # Wald test for program
>
> WaldTest = function(L,thetahat,Vn,h=0) # H0: L theta = h
+ # Note Vn is the asymptotic covariance matrix, so it's the
+ # Consistent estimator divided by n. For true Wald tests
+ # based on numerical MLEs, just use the inverse of the Hessian.
+ {
+ WaldTest = numeric(3)
+ names(WaldTest) = c("W","df","p-value")
+ r = dim(L)[1]
+ W = t(L%*%thetahat-h) %*% solve(L%*%Vn%*%t(L)) %*%
                    (L%*%thetahat-h)
+ W = as.numeric(W)
+ pval = 1-pchisq(W,r)
+ WaldTest[1] = W; WaldTest[2] = r; WaldTest[3] = pval
+ WaldTest
+ } # End function WaldTest
>
> Lprog = rbind(cc(0,0,0,1,0),
+ c(0,0,0,0,1) )
> WaldTest(L=Lprog,thetahat=model2$coefficients,Vn=vcov(model2))
    W df p-value
6.73350088 2.00000000 0.03450157
> # Compare G^2 = 6.8767, df=2, p=0.032118
```


Back to the Multinomial Jobs Example

Students at a trade school are either employed in their field of study, employed outside their field of study, or unemployed. University administrators recognize that the percentage of students who are unemployed after graduation will vary depending upon economic conditions, but they claim that still, about twice as many students will be employed in a job related to their field of study, compared to those who get an unrelated job. To test this hypothesis, they select a random sample of 200 students from the most recent class, and observe 106 employed in a job related to their field of study, 74 employed in a job unrelated to their field of study, and 20 unemployed.

Under a multinomial model,

- Senseless $\mathrm{H}_{0}: \pi_{1}=\pi_{2}=\pi_{3}$ yielded $\mathrm{G}^{2}=65.6, \mathrm{df}=2$
- $\mathrm{H}_{0}: \pi_{1}=2 \pi_{2}, \mathrm{G}^{2}=4.739, \mathrm{df}=1$

Maybe the numbers of students in each category are independent Poisson RVs. Recall that independent Poissons conditional on their total are multinomial, with

$$
\pi_{j}=\frac{\lambda_{j}}{\sum_{i=1}^{c} \lambda_{i}}
$$

So what we did earlier could be justified under the present assumptions.
> jobz = read.table(stdin()) \# Read from standard input
0: Job Freq

1: 1 Related 106
2: 2 Unrelated 74
3: 3 Unemployed 20
4:
> \# End with Ctrl-D on Unix (Mac) or Ctrl-Z on Windows
> jobz
Job Freq
1 Related 106
2 Unrelated 74
3 Unemployed 20

```
> freq = jobz$Freq
> job = factor(jobz$Job)
> contrasts(job)
    Unemployed Unrelated
Related
Unemployed
Unrelated
```

1
0

0 0 1

Job Status	d_{1}	$\mathrm{~d}_{2}$	$\log \lambda=\beta_{0}+\beta_{1} \mathrm{~d}_{1}+\beta_{2} \mathrm{~d}_{2}$	λ
Related	0	0	β_{0}	$\exp \left(\beta_{0}\right)$
Unemployed	1	0	$\beta_{0}+\beta_{1}$	$\exp \left(\beta_{0}\right) \exp \left(\beta_{1}\right)$
Unrelated	0	1	$\beta_{0}+\beta_{2}$	$\exp \left(\beta_{0}\right) \exp \left(\beta_{2}\right)$

On average, we expect $\exp \left(\beta_{1}\right)$ times as many unemployed students as students with jobs related to their fields of study.

```
> full0 = glm(freq~job,family=poisson)
> summary(full0)
```

Call:
glm(formula $=$ freq \sim job, family $=$ poisson)
Deviance Residuals:

```
[1] 0 0 0
```

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $4.663440 .0971348 .013<2 \mathrm{e}-16$ ***
jobUnemployed -1.66771 0.24379 -6.841 7.88e-12 ***
jobUnrelated $-0.35937 \quad 0.15148$-2.372 0.0177^{*}
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.' 0.1 ', 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: $6.5598 \mathrm{e}+01$ on 2 degrees of freedom
Residual deviance: $-7.9936 \mathrm{e}-15$ on 0 degrees of freedom AIC: 23.489

Number of Fisher Scoring iterations: 3
> fullo\$null.deviance \# LR test, compare G^2 = 65.6 [1] 65.59798

Better null hypothesis

$$
\begin{aligned}
H_{0}: & \pi_{1}=2 \pi_{2} \\
\Leftrightarrow & \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}=2 \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} \\
\Leftrightarrow & \lambda_{1}=2 \lambda_{2} \\
\Leftrightarrow & \log \lambda_{1}=\log 2+\log \lambda_{2} \\
\Leftrightarrow & \beta_{0}=\log 2+\beta_{0}+\beta_{1} \\
\Leftrightarrow & \beta_{1}=-\log 2
\end{aligned}
$$

> \# Offset "can be used to specify an a priori known component
> \# to be included in the linear predictor during fitting. This should
> \# be NULL or a numeric vector of length either one or equal to the
> \# number of cases."
> freq
[1] $106 \quad 74 \quad 20$
$>d 1=c(0,1,0)$
$>d 2=c(0,0,1)$
$>$ red0 $=$ glm(freq \sim d2, offset=-log(2)*d1,family=poisson)
> anova(red0,full0,test='Chisq') \# Compare 4.739
Analysis of Deviance Table
Model 1: freq ~ d2
Model 2: freq ~ job
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$

1	1	4.7395			
2	0	0.0000	1	4.7395	$0.02948 *$

