Likelihood 2: Wald (and Score) Tests ${ }^{1}$ STA442/2101 Fall 2012

[^0]
Background Reading

Davison Chapter 4, especially Sections 4.3 and 4.4

Vector of MLEs is Asymptotically Normal

That is, Multivariate Normal

This yields

- Confidence intervals
- Z-tests of $H_{0}: \theta_{j}=\theta_{0}$
- Wald tests
- Score Tests
- Indirectly, the Likelihood Ratio tests

Under Regularity Conditions

(Thank you, Mr. Wald)

- $\widehat{\boldsymbol{\theta}}_{n} \xrightarrow{\text { a.s. } \boldsymbol{\theta}}$
- $\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathbf{T} \sim N_{k}\left(\mathbf{0}, \mathcal{I}(\boldsymbol{\theta})^{-1}\right)$
- So we say that $\hat{\boldsymbol{\theta}}_{n}$ is asymptotically $N_{k}\left(\boldsymbol{\theta}, \frac{1}{n} \mathcal{I}(\boldsymbol{\theta})^{-1}\right)$.
- $\mathcal{I}(\boldsymbol{\theta})$ is the Fisher Information in one observation.
- A $k \times k$ matrix

$$
\mathcal{I}(\boldsymbol{\theta})=\left[E\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(Y ; \boldsymbol{\theta})\right]\right]
$$

- The Fisher Information in the whole sample is $n \boldsymbol{\mathcal { I }}(\boldsymbol{\theta})$

$H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$

Suppose $\boldsymbol{\theta}=\left(\theta_{1}, \ldots \theta_{7}\right)$, and the null hypothesis is

- $\theta_{1}=\theta_{2}$
- $\theta_{6}=\theta_{7}$
- $\frac{1}{3}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)=\frac{1}{3}\left(\theta_{4}+\theta_{5}+\theta_{6}\right)$

We can write null hypothesis in matrix form as

$$
\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4} \\
\theta_{5} \\
\theta_{6} \\
\theta_{7}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Suppose $H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$ is True, and $\widehat{\mathcal{I}(\boldsymbol{\theta})_{n}} \xrightarrow{p} \boldsymbol{\mathcal { I }}(\boldsymbol{\theta})$

By Slutsky 6a (Continuous mapping),

$$
\sqrt{n}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{L} \boldsymbol{\theta}\right)=\sqrt{n}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right) \xrightarrow{d} \mathbf{L} \mathbf{T} \sim N_{k}\left(\mathbf{0}, \mathbf{L} \boldsymbol{\mathcal { I }}(\boldsymbol{\theta})^{-1} \mathbf{L}^{\prime}\right)
$$

and

$$
\widehat{\boldsymbol{\mathcal { I }}(\boldsymbol{\theta})_{n}^{-1}} \xrightarrow{p} \boldsymbol{\mathcal { I }}(\boldsymbol{\theta})^{-1}
$$

Then by Slutsky's (6c) Stack Theorem,

$$
\binom{\sqrt{n}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)}{\widehat{\mathcal{I}(\boldsymbol{\theta})_{n}^{-1}}} \xrightarrow{d}\binom{\mathbf{L T}}{\boldsymbol{\mathcal { I }}(\boldsymbol{\theta})^{-1}} .
$$

Finally, by Slutsky 6a again,

$$
\begin{aligned}
W_{n} & \left.=n(\mathbf{L} \widehat{\boldsymbol{\theta}}-\mathbf{h})^{\prime}(\mathbf{L} \widehat{\mathcal{I}(\boldsymbol{\theta}})_{n}^{-1} \mathbf{L}^{\prime}\right)^{-1}(\mathbf{L} \widehat{\boldsymbol{\theta}}-\mathbf{h}) \\
& \xrightarrow{d} W=(\mathbf{L T}-\mathbf{0})^{\prime}\left(\mathbf{L} \mathcal{I}(\boldsymbol{\theta})^{-1} \mathbf{L}^{\prime}\right)^{-1}(\mathbf{L T}-\mathbf{0}) \sim \chi^{2}(r)
\end{aligned}
$$

The Wald Test Statistic

$W_{n}=n\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)^{\prime}\left(\mathbf{L} \widehat{\mathcal{I}(\boldsymbol{\theta})_{n}^{-1}} \mathbf{L}^{\prime}\right)^{-1}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)$

- Again, null hypothesis is $H_{0}: \mathbf{L} \boldsymbol{\theta}=\mathbf{h}$
- Matrix \mathbf{L} is $r \times k, r \leq k$, rank r
- All we need is a consistent estimator of $\boldsymbol{\mathcal { I }}(\boldsymbol{\theta})$
- $\boldsymbol{I}(\widehat{\boldsymbol{\theta}})$ would do
- But it's inconvenient
- Need to compute partial derivatives and expected values in

$$
\boldsymbol{I}(\boldsymbol{\theta})=\left[E\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(Y ; \boldsymbol{\theta})\right]\right]
$$

Observed Fisher Information

- To find $\widehat{\boldsymbol{\theta}}_{n}$, minimize the minus log likelihood.
- Matrix of mixed partial derivatives of the minus log likelihood is

$$
\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ell(\boldsymbol{\theta}, \mathbf{Y})\right]=\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \sum_{i=1}^{n} \log f\left(Y_{i} ; \boldsymbol{\theta}\right)\right]
$$

- So by the Strong Law of Large Numbers,

$$
\begin{aligned}
\mathcal{J}_{n}(\boldsymbol{\theta}) & =\left[\frac{1}{n} \sum_{i=1}^{n}-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f\left(Y_{i} ; \boldsymbol{\theta}\right)\right] \\
& \xrightarrow{\text { a.s. }}\left[E\left(-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(Y ; \boldsymbol{\theta})\right)\right]=\boldsymbol{\mathcal { I }}(\boldsymbol{\theta})
\end{aligned}
$$

A Consistent Estimator of $\mathcal{I}(\boldsymbol{\theta})$

Just substitute $\widehat{\boldsymbol{\theta}}_{n}$ for $\boldsymbol{\theta}$

$$
\begin{aligned}
\mathcal{J}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right) & =\left[\frac{1}{n} \sum_{i=1}^{n}-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f\left(Y_{i} ; \boldsymbol{\theta}\right)\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{n}} \\
& \xrightarrow{\text { a.s. }}\left[E\left(-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(Y ; \boldsymbol{\theta})\right)\right]=\boldsymbol{I}(\boldsymbol{\theta})
\end{aligned}
$$

- Convergence is believable but not trivial.
- Now we have a consistent estimator, more convenient than $\mathcal{I}\left(\widehat{\boldsymbol{\theta}}_{n}\right):$ Use $\left.\widehat{\boldsymbol{\mathcal { I }}(\boldsymbol{\theta}}\right)_{n}=\mathcal{J}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)$

Approximate the Asymptotic Covariance Matrix

- Asymptotic covariance matrix of $\widehat{\boldsymbol{\theta}}_{n}$ is $\frac{1}{n} \boldsymbol{\mathcal { I }}(\boldsymbol{\theta})^{-1}$.
- Approximate it with

$$
\begin{aligned}
\widehat{\mathbf{V}}_{n} & =\frac{1}{n} \mathcal{J}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)^{-1} \\
& =\frac{1}{n}\left(\frac{1}{n}\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ell(\boldsymbol{\theta}, \mathbf{Y})\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{n}}\right)^{-1} \\
& =\left(\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ell(\boldsymbol{\theta}, \mathbf{Y})\right]_{\boldsymbol{\theta}=\widehat{\boldsymbol{\theta}}_{n}}\right)^{-1}
\end{aligned}
$$

Compare

Hessian and (Estimated) Asymptotic Covariance Matrix

- $\widehat{\mathbf{V}}_{n}=\left(\left[-\frac{\partial^{2}}{\partial \theta_{i} \theta_{j}} \ell(\boldsymbol{\theta}, \mathbf{Y})\right]_{\theta=\hat{\boldsymbol{\theta}}_{n}}\right)^{-1}$
- Hessian at MLE is $\mathbf{H}=\left[-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ell(\boldsymbol{\theta}, \mathbf{Y})\right]_{\theta=\widehat{\boldsymbol{\theta}}_{n}}$
- So to estimate the asymptotic covariance matrix of $\boldsymbol{\theta}$, just invert the Hessian.
- The Hessian is usually available as a by-product of numerical search for the MLE.

Connection to Numerical Optimization

- Suppose we are minimizing the minus log likelihood by a direct search.
- We have reached a point where the gradient is close to zero. Is this point a minimum?
- The Hessian is a matrix of mixed partial derivatives. If all its eigenvalues are positive at a point, the function is concave up there.
- Its the multivariable second derivative test.
- The Hessian at the MLE is exactly the observed Fisher information matrix.
- Partial derivatives are often approximated by the slopes of secant lines - no need to calculate them.

So to find the estimated asymptotic covariance matrix

- Minimize the minus log likelihood numerically.
- The Hessian at the place where the search stops is exactly the observed Fisher information matrix.
- Invert it to get $\widehat{\mathbf{V}}_{n}$.
- This is so handy that sometimes we do it even when a closed-form expression for the MLE is available.

Estimated Asymptotic Covariance Matrix $\widehat{\mathbf{V}}_{n}$ is Useful

- Asymptotic standard error of $\widehat{\theta}_{j}$ is the square root of the j th diagonal element.
- Denote the asymptotic standard error of $\widehat{\theta}_{j}$ by $S_{\widehat{\theta}_{j}}$.
- Thus

$$
Z_{j}=\frac{\widehat{\theta}_{j}-\theta_{j}}{S_{\widehat{\theta}_{j}}}
$$

is approximately standard normal.

Confidence Intervals and Z-tests

Have $Z_{j}=\frac{\widehat{\theta}_{j}-\theta_{j}}{S_{\widehat{\theta}_{j}}}$ approximately standard normal, yielding

- Confidence intervals: $\widehat{\theta}_{j} \pm S_{\widehat{\theta}_{j}} z_{\alpha / 2}$
- Test $H_{0}: \theta_{j}=\theta_{0}$ using

$$
Z=\frac{\widehat{\theta}_{j}-\theta_{0}}{S_{\widehat{\theta}_{j}}}
$$

And Wald Tests

Recalling $\widehat{\mathbf{V}}_{n}=\frac{1}{n} \mathcal{J}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)^{-1}$

$$
\begin{aligned}
W_{n} & \left.=n\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)^{\prime}(\mathbf{L} \widehat{\mathcal{I}(\boldsymbol{\theta}})_{n}^{-1} \mathbf{L}^{\prime}\right)^{-1}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right) \\
& =n\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)^{\prime}\left(\mathbf{L} \mathcal{J}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)^{-1} \mathbf{L}^{\prime}\right)^{-1}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right) \\
& =n\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)^{\prime}\left(\mathbf{L}\left(n \widehat{\mathbf{V}}_{n}\right) \mathbf{L}^{\prime}\right)^{-1}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right) \\
& =n\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)^{\prime} \frac{1}{n}\left(\mathbf{L} \widehat{\mathbf{V}}_{n} \mathbf{L}^{\prime}\right)^{-1}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right) \\
& =\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)^{\prime}\left(\mathbf{L} \widehat{\mathbf{V}}_{n} \mathbf{L}^{\prime}\right)^{-1}\left(\mathbf{L} \widehat{\boldsymbol{\theta}}_{n}-\mathbf{h}\right)
\end{aligned}
$$

Score Tests

Thank you Mr. Rao

- $\widehat{\boldsymbol{\theta}}$ is the MLE of $\boldsymbol{\theta}$, size $k \times 1$
- $\widehat{\boldsymbol{\theta}}_{0}$ is the MLE under H_{0}, size $k \times 1$
- $\mathbf{u}(\boldsymbol{\theta})=\left(\frac{\partial \ell}{\partial \theta_{1}}, \ldots \frac{\partial \ell}{\partial \theta_{k}}\right)^{\prime}$ is the gradient.
- $\mathbf{u}(\widehat{\boldsymbol{\theta}})=0$
- If H_{0} is true, $\mathbf{u}\left(\widehat{\boldsymbol{\theta}}_{0}\right)$ should also be close to zero.
- Under H_{0} for large $N, \mathbf{u}\left(\widehat{\boldsymbol{\theta}}_{0}\right) \sim N_{k}(\mathbf{0}, \mathcal{J}(\boldsymbol{\theta}))$, approximately.
- And,

$$
S=\mathbf{u}\left(\widehat{\boldsymbol{\theta}}_{0}\right)^{\prime} \mathcal{J}\left(\widehat{\boldsymbol{\theta}}_{0}\right)^{-1} \mathbf{u}\left(\widehat{\boldsymbol{\theta}}_{0}\right) \sim \chi^{2}(r)
$$

Where r is the number of restrictions imposed by H_{0}

Three Big Tests

- Score Tests: Fit just the restricted model
- Wald Tests: Fit just the unrestricted model
- Likelihood Ratio Tests: Fit Both

Comparing Likelihood Ratio and Wald

- Asymptotically equivalent under H_{0}, meaning $\left(W_{n}-G_{n}\right) \xrightarrow{p} 0$
- Under H_{1},
- Both have approximately the same distribution (non-central chi-square)
- Both go to infinity as $n \rightarrow \infty$
- But values are not necessarily close
- Likelihood ratio test tends to get closer to the right Type I error rate for small samples.
- Wald can be more convenient when testing lots of hypotheses, because you only need to fit the model once.
- Wald can be more convenient if it's a lot of work to write the restricted likelihood.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{L} T_{E} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~ brunner/oldclass/appliedf12

[^0]: ${ }^{1}$ See last slide for copyright information.

